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— NOTES —

NOTE ON FLOW IN CANALS*

By W. H. JURNEY (Bureau of Reclamation, Denver, Colorado)

Introduction. The design of irrigation systems to service a certain area sometimes

necessitates the installation of pumping stations between each of which is a canal

section with water being pumped in at one end and out at the other at constant rates.

Starting or stopping the pumps produces long waves which are sometimes referred to

as "surge waves" or "bore waves," with associated changes in height of the water

surface. Such waves have been considered by Masse1 and Deymie.2 It is the prediction

of these changes in height of the water surface, under constant inflow, constant out-

flow, or any combination of the two, which is the problem solved in this note. This is

done by first considering an infinite canal with one source of constant inflow and using

a method of "image" sources to produce the effect of reflections at the ends of a finite

canal. Simplifying assumptions3 are as follows:

1). The canal is of constant cross section throughout its length.

2). The effect of fluid velocity in the canal on the wave velocity is negligible.

3). Vertical accelerations of water are negligible.

4). The frictional resistance to flow is proportional to the velocity.

5). The height of water surface above normal depth, due to wave action, is small

compared to normal depth.

Fundamental wave equations. The usual equations of motion and continuity are:4

di) du B dn dtj
- — = —h—u< (*); ~T=m7' ^

ox gat g Ox hot

respectively, where x is the horizontal distance along the canal (ft.), t is the time (sec.),

h is the normal depth of the water in the canal (ft.), rj is the height of the water surface

above normal (ft.), u is the horizontal velocity of the fluid (ft./sec.), g is the accelera-

tion of gravity (ft./sec.2) and B is a constant to be determined. In the computations

on a special case for a finite canal, B was taken as igA/Q where A is the area of a

vertical cross section of the canal (sq. ft.) and i is the slope of the canal computed

from Chezy's formula to give a flow of Q cu. ft. per sec. One alternative procedure is

to find the frictional force resisting flow in the form4 X = cu2 and approximate this
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1 P. Masse, Hydrodynamique fluviale, regimes variables, Hermann, Paris, 1935.

2 Ph. Deymie, Proc. 5th Int. Congress Appl. Mech., Cambridge, Mass., 1938, Wiley, 1939, pp. 537-543.
3 Lamb, Hydrodynamics (6th ed.), Cambridge University Press, 1932, p. 254, et seq.

' Lamb, loc. cit.
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force by 0.75 cuQ/A. This gives the "least square fit" to the force X in the range of

velocities 0 ^ u ^ Q/A.

It is easily seen that, for the infinite canal of uniform cross section with constant

inflow at a point, the boundary condition is «(0, t) =Q/A = constant, where Q is the

constant inflow.

In order to reduce the problem to dimensionless form, it is convenient to make the

substitutions
B px

P = —> pt = a, — = /3, (3)
2 a

u(x, t) u(pa/p, a/p) .
- = Ufa a), (4)

w(0, 0) Uo

v(x, t) j?(/3a/p, a/p)
= Hfa a), (5)

V(0, 0) 7?o

where a is the wave velocity (= \/rgh ft./sec.) and

«o = Vg/h vo- (6)

Equations (1) and (2) become

dH dU dU dH
--T7=T-+2U' —17= T- ' (g)

3/3 da d(3 da

A solution of Eqs. (7) and (8), adapted from Heaviside's work in electromagnetic

theory,5 is

Ufa a) = e~"Io{Va2 - 0*}, (9)

^ (/i(«) + 7t(a)}

3! a
Hfa a) = e~^e" - p {/„(«) + /,(«)} +

1-3 /3S{/S(a) + 7s(a)}

]•
5! . +•••!. do)

where /„(a) is the modified Bessel function of order n. This solution is fundamental

to the following and corresponds to the case of an infinite canal with a barrier at the

origin initially such that ri(x, 0) =2tj0 = const, for x^0 and ri(x, 0) =0 for a:>0. Upon

removal of the barrier at t = 0, 77 immediately drops to 770 and remains there. It is this

property of H(P, a) that makes it valuable in studying other flow conditions with

arbitrary velocity at the origin, that is, u(0, t). In particular, to complete the solution

for the infinite canal problem as proposed, it is merely necessary to choose

H(0, a) = F(a) so that U(0, a) = l, and then find H(f3, a) or U(/3, a) correspond-

ing to H(0, a) by an integration.

Now an increment AF(a) put in at a = £ for /3 = 0 produces an increment AU at

0 = 0, a = a of
  At/(0, a) ^ AFe-<°-»I0(a - £). (11)

5 O. Heaviside, Electromagnetic theory, vol. 2, The Electrician Printing and Publishing Co., Ltd.,

London, 1899, p. 303 et seq.
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Hence, after integrating and adding the initial effect, we have

U(0, a) = f V<-»I0(a - 0^(0# + e~"Io(a) = 1. (12)
•J o

The solution of this integral equation is easily shown to be6

F'(a) = e~°{lo(a) + h(a)}. (13)

The effect of applying increments of 77(0, a) may be represented approximately by

AU(0, a) S *-<«-«/,{ V(« - 02 ~ P2}F'(0dZ, (14)

P3 {/i(a-{) + /,(«-{)}
05, a) = [e°~t - /3{/0(a - £) + 7x(a - {)} +

a — £

li gM^(«-t)+ /»(«-{)}
5! (a~f)2

+ • • • F'(£)d£. (15)

Thus, integration and the addition of the initial effect yields the solution of the prob-

lem as

e-U(P, a) = 14Via - $)2 - 02} {/o© + /x(f)}^ + /o{Va2 - 02}, (16)
J o

"_T _t 0(t, b\ t r f rt. . {/l(«-f) + 7,(a-«)}6^03, a) = f I"e«-t - ^{/o(a - f) + 7X(« - {)} +
•/ o L 3! a — £

1-3 /35{/2(a - 0 + I3(a - {)}

5! («~£)2
+ ]{/«({)+ /i({)}<*€

T/U , P {/i(«) + /»(«)} 1-3 /3«{7s(a) + 7a(a)}
+ e« - 0 {/„(«) + /1(o)} +— — — (17)

3! a 51 a2

Equation (17), on which attention is now focused, may be transformed into

slightly better form for computation, as follows. We write

Jo («-f)"

r » {7„(s) + 7n+i(s)} ,
= e a I {7o(a — s) + Ii(a — s)}ds = GnQ3, a). (18)

J f) Sn

Therefore,

77(0, a) = 1 + f V« {70(f) + 7,(f)}# - 0{Go(/3, a) + K0(a)}
J 0

#3 1-3/S6
+ - {Gi(p, a) + Kr(a)} - {C2(/3, «) + K,(a) } + ■■■, (19)

• H. T. Davis, A survey of methods for the inversion of integrals of Volterra type, Indiana University

Studies, Nos. 76 and 77, 1927, p. 51.
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where
_{/»(«) +W«)}

Kn(a) = e" (20)
an

H{(3, a) as given by Eq. (19) is tabulated in Table 1 for the range of values

0 5=/3 iSa , three terms of each series involved in Eq. (19) giving the results to three

decimal places. Tables of the modified Bessel function,7 in conjunction with a Simp-

son's rule for five intervals, were used in making the computations. The results were

checked by graphical integration. It is to be noted that a horizontal row in Table 1

gives the history of the height above normal at a fixed time, while a vertical column

gives the height history at a fixed point.

Table 1. H(0, a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.000
1.098
1.191
1.280
1.365
1.446
1.525
1.601
1.674
1.745
1.813

0.905
0.998
1.086
1.171
1.253
1.331
1.407
1.480
1.550
1.619

0.819
0.907
0.991
1.072
1.150
1.225
1.298
1.368
1.436

0.741
0.824
0.904
0.981
1.056
1.127
1.197
1.264

0.670
0.749
0.825
0.898
0.969
1.037
1.104

0.606
0.681
0.753
0.822
0.889
0.954

0.549
0.619
0.687
0.752
0.816

0.496
0.562
0.626
0.688

0.449
0.511
0.571

0.406
0.464 0.366

Note: The table was computed to more figures and in the range 0 SaS 2, but since it is used here

for illustrative purposes only, the abbreviated form is given.

Finite canal section. The flow condition in a finite canal section of length L with

constant flow Q at one end (origin) is simulated by considering an infinite canal with

sources of constant inflow Q located at points 0, + 2L, + 4L, • • • . In the type of in-

vestigation for which this problem was solved, the maximum height in the canal was

the prime consideration, and only a few reflections are needed to determine this maxi-

mum. Table 1 suffices to carry out the necessary computations. For the outflow case

it is merely necessary to reverse results for inflow.

Remarks. Strictly speaking, the results of course apply only to a canal initially

at rest, and if in the case of a finite canal with a sloping bottom it is desired to com-

pute heights subsequent to a shut down, these should be referred to the surface in

running position which, in the case of a properly designed canal, will be parallel to

the bottom.

Heaviside solved the analogous electromagnetic problem for the infinite telegraph

cable by use of operational calculus. But so far as the writer knows, the solution as

applied to canals is unavailable elsewhere. It is seen that by the elimination of TJ or H

from Eqs. (7) and (8), the differential equation which either one satisfies is

7 Gray and Mathews, Treatise on Bessel functions, Macmillan and Co., London, 1922.
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d2(/> 2 dcj> 32<£
— + — =—• (21)
da2 da 3/32

Thus the problem for the infinite canal, of which Eq. (19) is the solution, is equivalent

to that of solving Eq. (21) (a, /3 2:0) with the boundary conditions

*(0, 0) = 0, 0(0, a) = *-«[$« {3/0(a) + 4/x(a) + /,(«)} + /„(«) + /i(a)].

NOTE ON THE ELLIPTIC WING*

By F. STEINHARDT (Columbia University)

The acceleration potential method of Prandtl for studying the aerodynamics of

a lifting surface is well known.1 In the applications to specific surfaces one is naturally

led to wings with circular or elliptic plan view. Prandtl's theory has been completely

elaborated for these two cases by W. Kinner2 and K. Krienes.3

In an effort to extend the class of wings for which numerical results have been ob-

tained, a theory based on the work of Krienes was developed for the semi-elliptic

wing by E. R. Lorch. Computations carried out for this case by the author had to be

abandoned due to very poor convergence. This has suggested that the question of

convergence in Krienes' work, which plays an important role there, be examined more

closely. This matter is investigated in the present note.

We base our discussion on Krienes' paper. The reader is referred to it for the de-

tails which it is impossible to reproduce here. In this work the pressure p is expressed

in terms of a potential function \p. We have

P — P» = — poVV(*. y, z), Ai = 0, (1)

where px is the pressure at infinity, p0 is the density, and V is the velocity of the wing.

In turn \p is expanded in a series

oc 2 n-f-1 oo

^ = Z E <ir*r +Sca, (2)
71= 1 m=l n— 1

(Krienes, Eq. (81) with Dn = 0) where

dp
in (p, m. ") = E„ (n)E„ (v)E„ (p) f

[£-(p)]2[(p2- l)(p2- ft)] 1/2

ZTm m m 1—n & r n m -i

6n$n, <*>n =C — [C \pn (X, y, Z, C) J,
TO " £

* Received June 5, 1944.
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