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POWER SERIES EXPANSIONS OF THE VELOCITY
POTENTIAL IN COMPRESSIBLE FLOW*

BY

G. K. BATCHELOR

Division of Aeronautics, Council for Scientific and Industrial Research, Australia

1. The equation for compressible flow. The equation describing the two-dimen-

sional irrotational flow of a compressible fluid is

d2ip 1 dip 1 d2(p |~0<p dg2 dip 3o21 r
—— + - + - = w — —+ — — [1 - Kt - 1)(?2 - I)]-1, (1.1)
dr2 r dr r2 692 Ldr dr rdd rd0J

where r, 6 are polar coordinates, M is the Mach number of the flow at some distance

from the origin where the velocity is assumed to be uniform, y is the ratio of specific

heats of the fluid and <p, q are the velocity potential and velocity, respectively, at the

point r, 0. All distances are referred to some typical dimension in the field, and veloci-

ties are referred to the speed of the uniform stream. The boundary conditions to be

imposed on <p are (1) d<p/dr-+cos 6 as r—» °°, where 6 is measured from the direction of

the uniform stream, and (2) the normal derivative of <p equals zero at the boundary

of a fixed obstacle in the stream.

Many attempts have been made to solve this equation analytically, but none has

met with complete success. Most of the progress has been through some linearizing

process, such as writing <p as a power series in M2, the non-linear terms on the right

hand side of (1.1) then being of higher order in M2 than the linear terms on the left.

Again, a transformation to new independent variables, the magnitude and direction

of the local fluid velocity, gives a linear equation for <f>. In this paper, use is made of

an expansion of <p as a power series in r~l and it is shown that the equation for each of

the coefficients in the series is linear. Some light is thrown on the form of the expres-

sion for <p which may be expected in the two cases of zero and finite circulation about

the obstacle.
2. Case of zero circulation. For the case of flow past an obstacle about which there

is no circulation we make the assumption that <p can be written in the following form:

<p = r cos 6 + r-1/i(0) + r~2ft(6) + r~3f3(6) + • ■ • . (2.1)

It will be seen later that the term independent of d reduces to a constant when the

circulation is zero, and thus may be ignored. Whether or not this expansion for <p is

valid will be apparent from the subsequent solutions which are obtained for the func-

tions fn(0). Invalidity of the assumption (2.1) may be made manifest either as a lack

of convergence of the power series in r-1, or as a lack of periodicity in 9 of any of the

/„(0). In the former case, the series could presumably be made convergent by choosing

r large enough, so that any conclusions would apply only to regions far from the

origin. If, as seems probable, there is no specially favoured region, we may regard the

expansion (2.1) as valid generally provided that the resulting equations for the/„(0)

give periodic solutions.

♦ Received May 15, 1944.
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The expression for q2 corresponding to (2.1) is

g2 = 1 + r~2(— 2/i cos 0 — 2f{ sin 0) + • • •

_|_ r-n-x(_ 2nfn cos 0 — 2/„' sin 0+ •••) + ••• (2.2)

where dashes denote differentiation with respect to 6, and, in the general coefficient,

only terms involving/„ have been retained. Substituting both (2.1) and (2.2) in the

equation (1.1) and equating coefficients of r~"~2 we obtain, after some reduction,

fZ( 1 - M2 sin2 0) - (n + 1 )M2 sin 20 + fn[n2 + nM2 - in2 + 2«)M2 cos2 0]

= Jkr2£n(/n_2l/n_3) • • • ,/i,0), (2.3)

where E„ is an undetermined function.

The equation (2.3) may be normalized by writing

hn(6)
/.(«) =  —  (2.4)

(1 - M2 sin2 0)»<"+l>

which gives for A„(0)

( (n2 - 1)(1 - M2) 1
K' + hJ 1 + —  . ; \ = M2E„( 1 - M2 sin2 0)»c+'). (2.5)

I (1 — M2 sin2 0)2 )

The homogeneous equation may also be written in the form

hn + hn ̂ 1 + «o ^ 2mj, cos 2pdJ = 0, (2.6)

where
" (2w)!(w+l) /M\2m

^ = (w2 - 1)(1 - ilf2)(- 1)"£  —( — ) •, , . (2.7)
(w — />) !(ot + />)! "

The expression for is convergent provided M2 < 1 and is absolutely conver-

gent for the same condition. The equation (2.6) will be recognized as being identical

with Hill's equation which arises in a determination of the motion of the lunar

perigee.1 As is already known,2 Hill's equation may be solved by the assumption of a

series expansion of hn; for instance, we may write

oo

K = Z V29i9 (2.8)
q=—oo

and determine the constants bq, and ju, which governs the periodicity of the solution.

However, the method is tedious and we shall find it more expedient to derive a solu-

tion in powers of M2 from the equation (2.3).

We may also note that if only terms of order M° and M2 are retained in (2.6),

the homogeneous equation for hn degenerates to Mathieu's equation, viz.,

K + hn[n2 — M2{n2 — 1) cos 20] = 0. (2.9)

It is known that Mathieu's equation yields a periodic solution under certain condi-

1 G. W. Hill, Acta. Math., 8, 1-36 (1886).

8 See for example, Whittaker and Watson, Modern analysis, Camb. Univ. Press, Cambridge, 1940,

p. 413.
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tions; a proof that equation (2.9) gives a periodic solution (with consistent approxima-

tion) is demonstrated in the Appendix.

3. Periodicity of/„. Consider first the homogeneous equation for/n, viz.,

/„'' (1 -M2 sin2 0) (»+1 )M2 sin 20+ /„ [n2+nM2- (n2+2n)M2 cos2 0] = 0. (3.1)

In order to show that this equation gives a periodic solution for/„, we write the solu-

tion in the form

/„ = Fn. o + M2Fn,, + M*Fn.t + ■■■ . (3.2)

Substituting in (3.1) and equating coefficients of powers of M2 we obtain a series of

equations, each of the same type, for Fn,o, Fn,i, • • • . The typical equation is

K!m+1 + n2Fn,m+1 = F^m sin20 + F^„(n + 1) sin 20 — Fn.m[n - (n2 + 2n) cos20] (3.3)

the solution of which is periodic unless a term cos nd appears on the right-hand side.

Suppose that Fn,m consists of the sum of a number of cosine terms; if, for instance,

F„,m = C cos (pe + 8)

then (3.3) becomes

P'n,m+1 + w^n.m+i = C{\(P + n)(p + » + 2) cos [(/> + 2)0 + 5]

+ i(»2 — ̂ 2) cos (pe + 5) + ;(« — />)(« — P + 2) cos [(p — 2)0 + 6]}. (3.4)

Fn,m+1 will thus be unperiodic only if p—n — 2; the cases p=n and p — n + 2 do not

give finite terms in cos nd on the right of (3.4). Now the value of Fn-<> is

A„ cos (nd + e„) (An, e„ arbitrary).

Fn,i therefore contains terms in cos (« + 2)0 and cos nd. Similarly, Fn,i will contain

terms in cos (n+4)9, cos (n-\-2)6 and cos nd. Generally, we see that a term cos (n — 2)6

cannot arise in any of the Fn,m. Hence each of the F„,m+i will be periodic, and the solu-

tion of (3.1) is periodic.

Unfortunately, a proof that the particular solution of the equation (2.3) for/„ is

periodic is not as simple, since the function En is a very complicated one. For both

w = 1 and n = 2, En = 0 so that the complete solutions of/i and/2 are periodic.

However we can show generally that to the order of M2, at least, /„ is periodic.

To this order the denominator of the right hand side of equation (1.1) may be treated

as unity. It is also possible to write, in the numerator of this expression,

fn = An cos (nd + €„) (3.5)

where A„ and e„ are constants independent of M2. Considering only the terms of En

which can lead to a term in cos nd, we find that

n—2 n—2

En = — 2 cos e^j P(n — p)(n - p — l)/p/„_p_i — 2 cos 6 ̂  (n — p)flfn-v-\
p—1 1

n—2 n—2

- 2 sin P(n ~ P)fpfn-P-i + 2 sin 6 £ (n — p)(n — p — l)/p'/n-j>-i
1 1

+ unimportant terms. (3.6)

By the use of (3.5), this becomes
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n—2

£n= — 2 cos 6 ^ p(n — p)(n — p — \)ApAn-p-\ cos [(» — 2p— l)0+€n_p_i — €p]
i

n—2

+ 2 sin 0 ^ />(« — p)(n — p— \)ApAn-P-\ sin [(« — 2p— l)0+€n_p_i — ep]+ •••
i

n—2

= — 2 52 #(« — />)(»—p— l)Ap.4n-p^i cos [(«— 2/>)0+€„_p_i — e;,]+ • • • , (3.7)
1

showing that no terms in cos nd occur in En. Hence /„ is periodic at least as far as the

order of M2.

By carrying out in detail the iteration process for a solution of (2.3) in powers

of M2 for/s and ft, and also for/s for the case of a doubly symmetrical body (for which

" • * =0). the author has been able to show that non-periodicity does not

arise when terms of the order of M4 are considered, nor does it arise when the order

of M6 in/3 is considered. In addition, the solution of equation (1.1) appropriate to

flow past a circular cylinder has been found3 to be of the form (2.1), at least as far

as the order of M6.

Hence, although not yet proved, it seems probable that the particular solution

to the equation (2.3) for/„ is periodic. If this be the case, then the complete solution

for /» is periodic and the assumption of a series expansion (2.1) for <p may be regarded

as valid for the case of zero circulation.

4. Numerical values of the constants in/i. In the case n — 1, the normalized equa-

tion (2.5) becomes

Ar+A, = 0 (4.1)
which gives

A cos (0 + a)
fi =     (4.2)

1 - M2 sin2 6

where A and a are arbitrary constants, to be determined by the inner boundary layer

condition. This appears to be the only case for which the complete solution for /» is

obtainable, and has also been put foreard by Imai.4

In general, A and a are functions of M2 and we may write, for small values of M1,

A = a0 diM2 -f- a2M* -(-•••, (4.3)

a — ao + oliM2 + a^M* + • • • . (4.4)

Expanding fx in powers of M2 we then have

/i = a0cos (0+ao) + Af2[aocos (0+<*o) sin20+aicos(0+ao) — a0«isin(0+ao)]+ • • •. (4.5)

The value of /i correct to the order M2 is known for several different obstacle shapes

from the work of previous investigators. For instance, Kaplan6 has determined the

first approximation to compressible flow past an elliptic cylinder at an angle of inci-

dence /? to the uniform stream. Comparing his result with (4.5) we find, after some

reduction,

8 I. Imai, On the flow of a compressible fluid past a circular cylinder, II, Proc. Phys.-Math. Soc. Japan,

23, 180 (1941).

4 I. Imai, loc. cit.

5 C. Kaplan, jOn the use of residue theory for treating the subsonic flow of a compressible fluid, N.A.C.A.

Technical Report 728, 1942.
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c2 sin 2/3
Oo = 1 — 5c2 cos 2/3 +(4.6) tan a0 = > (4.7)

4 — c2 cos 2/3

a, = — [(- Ac4 ~ 4 - 16c-4) + (fc2 + 20c-2) cos 2/3 + (^c4 - 3)cos 4/3]
4 a0

1 4 + c2
+ — log [(|c2 + 14c-2 + 32c-6) + ( - ^JC1 - 5 - 40c-4) cos 2/3

4 a0 4 — c2 ,
+ (|c2 + 6c-2)cos 4/3], (4.8)

ai = sin 2/3 l"j + (1 - 4C2 cos 2/3) + £(4c-2 - |c2) log + "I, (4.9)
L 2a2 4 — c2J

where c is the distance between the centre and focus of the ellipse, and the unit of

length is the radius of the circle into which the ellipse transforms (equal to the mean

of the major and minor axes). At zero incidence, these expressions become

2t
a0 = 1 — jc2 =  , (4.10)

1 t

ai = 1(4c-2 - 1)(3 - 4c-2) + 4c~2 - l)4 log^^
4 — c2

<(1 ~ 20 21*
= -   log/, (4.11)

(1 - tY (1 - *2)(1 - 0!

ao = «i = 0, (4.12)

1.0

0.2 0.4 0.6 0.8 1.0

THICKNESS RATIO t

FLAT PLATE CIRCLE

Fig. 1. 00, Hi, for ellipses (0° incidence).

where t is the ratio of thickness to chord of the ellipse. The expressions (4.10) and

(4.11) are shown graphically in Fig. 1. For ellipses of thickness ratio less than 0-2,

01 is given accurately by a\=t.
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Using results obtained by Tomotika and Umemoto,6 it is also possible to derive

numerical values for a0, fli corresponding to the flow past a symmetrical Joukowski

aerofoil of arbitrary thickness at zero incidence. After considerable reduction, we

obtain from a comparison of these authors' formulae with (4.5)

a0 = 1(1 - k)(3 + k), (4.13)

ai = - ^tk~'(l ~ 3k + 2k2 + 2k3 - 3k4 + £6)(1 + k)b log (1 - k2)

+ 6k-6 - 12k~6 + 15*~4 + 42k~3 - 5k-2 - 52/fe-1 + 207 - 170/fe

- 6U2 + 36k3 + 10£4 - 4k"), (4.14)

c*o = ai = 0, (4.15)

where
1—6

k =   (4.16)
1 + e

and e is the parameter controlling thickness-to-chord ratio in the Joukowski trans-

formation as shown in the table. The unit of length is again the radius of the circle

Table—-Relation between « and t.

t = 0 0 03 0 05 0 07 0 10 0 15 0-20 0-30 0-50 »
t=0 0 0378 0 0618 0 0849 0 1179 0 1687 0-2150 0-2958 0-4210 1

into which the aerofoil transforms. The values of a0 and a\ are also shown in Fig. 2.

Most practical aerofoil shapes have a thickness ratio less than 0-2 and it is evident

that a0 and ai may be estimated with fair accuracy for these shapes by assuming a

linear dependence on t. Using the slope appropriate to t = 0, we have

a0 = 1.538/, ai = 0.769/ = 5^0- (4.17)

From the closeness of the values of a<> and <zi for an ellipse and a Joukowski aero-

foil of the same thickness ratio, it seems reasonable to suppose that a0 and a\ do not

vary greatly with change of shape of the obstacle. These results may then be of use

in estimating compressible flow past obstacles of different shapes at points far from

the origin.

The same procedure is also possible with the higher coefficients in the series for (p.

For instance, the equation for/2 is

fi (1 - M2 sin2 6) - 3/2 Mi sin 29 + /s(4 + 2M2 - 8M2 cos2 9) = 0 (4.18)

of which the solution, in powers of M2, as far as if2, is

ft = bo cos (29 -f- /So) + M2\bi cos (29 + /3i) — \b$ cos (40.+ /3o) ] + • • • , (4.19)

where bo, bi, fi0, ft are arbitrary and independent of M2. These constants could also be

determined from a comparison with known first-order solutions of the compressible

• S. Tomotika and H. Umemoto, On the subsonic flow of a compressible fluid past a symmetrical

Joukowski aerofoil, Tokyo Imp. Univ. Aero. Res. Inst., Report 205, 1941.

The expression for the velocity potential for compressible flow given by Tomotika and Umemoto is

slightly in error.

In the original symbols the coefficient of cos (25+<*) in the expression for <pi (Eq. 122) is given as

(Al/£)(2 + X« — 8X| log X») but should read as (h2/k)(2 + -|X| -f- -|X4 — 8X| log X»).
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flow past particular obstacles. We may note that for bodies symmetrical about axes

parallel and perpendicular to the uniform stream,

b0 = bi = • ■ • = 0. (4.20)

For these doubly-symmetrical bodies, in fact,

/» = /«-•••- 0. (4.21)

1.0

0.2 0.4 0.6 0.6

THICKNESS RATIO t
FLAT PLATE CIRCLE

Fig. 2. ao, Oj for Joukowski aerofoils (0° incidence).

5. Case of finite circulation. In the case of flow past a body about which a finite

circulation exists, the assumption of a power series expansion for ip becomes

<p = r cos 6 + fo(0) + r~lfi{6) + r~2f2(6) + • • • , (5.1)

where /0 is not periodic, but /i, /j, • • • must be so. Once again we can take the cri-

terion of validity of this assumption to be the periodicity of the resulting solutions

for/i, /2, • • • . Substituting (5.1) in the original equation (1.1) and equating coeffi-

cients of r~"~2, the equation for/,, is obtained as

/„' (1 - M2 sin2 0) - /„' (n + 1 )M2 sin 20 + /„[ra2 + nM2 - (w2 + 2n)M2 cos2 d]

= M*EJ (/_„ /„_2, •••,/„, 6), (5.2)
where

E'n = En — 2(n + 1) cos 6/ofLi - 2 sin OfofLi ~ 2 sin

+ 5/o S [P(n — P ~ 2)(fpfn-p-2 + fpfn-p-2) + /p/n-p-2 + fpfn-p-2]
p=0

- (7 - l)/o[(» - l)!/»-l + /I'l]

+ (7 - l)/i S fp [(» - P - 2)2/n-P-2 + fn—p—t] (n > 1). (5.3)
j>=»0
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As before, the appearance of a term cos nd in E„ at any stage of the solution in powers

of M2 will indicate that/n is non-periodic and hence that the assumption (5.1) is in-

valid. We shall in fact show that in this case, non-periodic solutions do arise. However,

a more appropriate form for the function <p presents itself, and this is shown to lead

to a solution which is self-consistent.

Confining attention to the order M2, we may write

/„ = Fn,0 + M2Fn,i. (5.4)

Fn,0l of course, is the incompressible solution

F„,0 = An cos (nd + tn). (5.5)

Substituting (5.4) and (5.5) in (5.2) and equating coefficients of powers of M- we ob-

tain the equation for F„,i as

Fn.i + n2F„,! = Ann(n + 1) cos [(« + 2)0 + e„] + An^\2n(n — 1 )/0' sin (nd + «„_i)

+ 2(n — l)/o sin [(« — 2)8 + «„_!]

+ 2(n — l)/0" sin 6 sin [(« — 1)0 + en_i]

n—2

— 2/0 Y^ApAn-j>-2{,n — p — 2) sin [(n —2p — 2)6 + «„_p-2 — e,]}
■p— 0

+ contribution from (5.6)

It will be shown later thatf»' is of order M2and may thus be neglected here. As shown

previously En does not give rise to a term cos nd or sin nd in this equation. Hence there

is one term on the right of (5.6) which gives a non-periodic particular solution for F„, 1;

this is
2n(n — l)fo An-i sin (nd + en_!) (5.7)

and the power series expansion (5.1) for <p is not valid.

A form for <p which will avoid an inconsistent solution is suggested by the relation

2 dG
V2[log r-G(r, 0)] = b log r-V2G, (5.8)

r or

where G is an arbitrary function of r and d, and V2 is the Laplacian operator. If we

choose G to be a solution of Laplace's equation, in particular,

G = Bn r~n cos (nd + «„'), (5.9)

where Bn and €„ are arbitrary constants, then

V2(G log r) = — 2nBnr~n~2 cos (nd + «„'). (5.10)

If now, in place of (5.1) we write

00

ip = r cos 6 + f0 + 2 r~n[jn + log r-M2Bn cos (nd + «„')], (5.11)
n«=l

the equation (5.6) for F„, 1 is unaffected except for the addition to the right-hand side

of a term
2nBn cos (nd + en').
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The particular solution for Fn,i will thus be periodic if we choose

Bn= (n- €n = «n-l + t/2 (» > 1). (5.12)

The case of w = l warrants special attention since we cannot write Fn-i.t

= An-i cos [(« — l)0 + e„_i] when n= 1. When n = 1, the "dangerous" term on the right

of (5.6) is — 2/o2 cos 6 so that we must choose -Bi=/o'2, t{ =0. Hence,

,2 cos 0 , " (w — 1)j4„_i sin (w0 + «„_i),—. » ,v V/V/o i/ > w—.

X) r~n-Bn cos (nd + 6n) = /0 /o£

= /'

,2 cos 0 , " a p4n cos (nd + €„)
 h /o 2^ "S cos e   
r i I rdd L r"

3 cos (nd + «„)"d fAn cos (nd + en)!)

+ si"#^L—?—]}• (S13)
But

oo

r cos 0 + k06 -f- r~nAn cos (nd + «„) = (p0) (5.14)
n=l

where <po is the velocity potential for incompressible flow and 2ttk0 (= 2-rrfo, neglecting

terms in M2) is the corresponding circulation. Thus

" / dfo dct> o\ d4>o
> . r~nBn cos (nd + ) = <c0 ( cos 0 f- sin 0 ) =• k0 > (5.15)
i \ rdd dr / dy

where y is the space ordinate at right angles to the direction of the free stream.

We have then, that when a finite circulation exists, the expression for <p, correct

to the order M2 at least, is

A d<t> o
<p = r cos 0 + /0 + + M2K0\og r  (5.16)

n-i dy

and this expression is confirmed by the known results for a circular cylinder.7 We may

also note, as a matter of convenience, that the expression for /„ in (5.16) may be ob-

tained by formally ignoring the log term when substituting in (1.1), and rejecting any

non-periodic solutions.

6. Solutions for/0 and/!. Putting n = 0 in (5.2) and noting that Ei =0, we have

integration of which gives

M2 sin 20
/o" = —fo, (6.1)

1 — M2 sin2 0

fo =  » (6.2)
1 - M2 sin2 0

where k is a constant which may depend on M2. This equation shows that the circula-

tion about the body in compressible flow is

2 TK

(6.3)
/- ** ;

f>dd = ——
0 (.1 — M2) 1/2

,7 S. Tomotika and H. Umemoto, loc. cit., Appendix.
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Substituting for k from (6.3) in (6.2) gives fo in terms of the circulation, and an

identical equation for the transverse velocity at large r has been found by Glauert8

using "small perturbation" theory.

The contribution to the velocity potential is found by integration of (6.2) to be

fo = k(1 - M2)-1'2 arctan [(1 - M2)1'2 tan d]

or, in terms of the circulation C,

c
fo — — arctan [(1 — M2)1'2 tan 0]. (6.4)

2t

Jpst as the magnitude of the circulation about a body in incompressible flow is arbi-

trary, so in compressible flow, the relation between circulation and Mach number is

arbitrary. In certain cases an independent criterion for this relation is available, e.g.,

for sharp-tailed bodies the circulation should be such as to prohibit an infinite velocity

at the tail-point for all Mach numbers. For blunt bodies, a convenient criterion is

that the circulation shall be the same at all Mach numbers. In this case, we may treat

C as a constant and the expansion of fo in powers of M'2 is

Q
fo = — [6 — iM2 sin 26 + M*(— £ sin 29 + ^ sin 40) + • • • ]. (6.5)

2t

(Actually this expression for fa has not been proved valid for powers of M2 beyond

the first. However it seems probable that equation (6.1) for/0 will hold whatever the

form of the remainder of the expression for cp. In the case of a circular cylinder with

circulation, it is not hard to show that (6.5) is correct to the order M4 at least.)

Putting w = 1 in equation (5.2) ,we have

/i"(l - M2 sin2 6) - 2f(M2 sin 26 + /x(l + M2 — 3M2 cos2 6) = 0, (6.6)

the only finite terms in E{ being terms which would give rise to non-periodic particu-

lar solutions. As shown in section 2, the solution is

A cos (6 + a)
/i = - ■ 2 (6-7)

1 — Ml sin'' a

where we are now justified in using this expression to the order M2 only; i.e.,

fi = a0 cos (6 + «o)

+ M2[a0 cos {6 + a0) sin2 6 + ax cos (6 + a0) — ao«i sin (6 toio)], (6.8)

the constants having the same meaning as in section 2 but different values owing to

the finite circulation.

As in the previous work, it is possible to derive the values of a0, ah aQ and ai by

comparison of (6.8) with the known results for certain obstacles. Results are available9

for the flow of a compressible fluid about a circular cylinder of unit radius, with con-

stant circulation C. Comparison with (6.8) shows that

Oo — 1« 0.1 — I + I — ) , (6.9)

8 H. Glauert, The effect of compressibility on the lift on an aerofoil, Proc. Roy. Soc., A 118, 113 (1928).
• S. Tomotika and H. Umemoto, loc. cit., Appendix.
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so that the value of f\ is not greatly altered by the presence of a small circulation.

We may also note that for a body, symmetrical about axes parallel and perpendic-

ular to the uniform stream

f{(e) =//(tt - 6),

giving a0 = ai = 0 and a corresponding result holds for/3,/5, • • • . In the case of even

values of n, the angle constants in/r are equal to ir.

7. Appendix; Proof that the equation y"-\-y[n-— M\n" — 1) cos 26] = 0 gives a

periodic solution. The general form of Mathieu's equation10 may be taken as

y" + y{a + 16q cos 26) = 0 (7.1)

the solution of which is periodic only if a and q are suitably related. The required

relation may be written

a = w2 + fli? + «2 <72 + • • • , (7-2)

since a must reduce to the square of an integer when q vanishes. Now, for the particu-

lar case of Mathieu's equation with which we are concerned,

a = w2, I69 = — M2(n2 — 1), (7.3)

and (7.2) will be satisfied to the order of M2 if ai = 0, or, when n = 1, by any value

of a\. Thus we need to show that ax = 0 for the general Mathieu equation.

This may be done by assuming a solution of (7.1) of the form

y = cos nO + qai{6) + g2a2(0) + • • • , (7.4)

where oci(6), a2(0), • • • are periodic functions of 6, independent of q. (The proof for

solutions which reduce to sin n6 when q = 0 is identical.) Substituting (7.2) and (7.4)

in (7.1) and equating coefficients of q we obtain

a'[ + n2ai + cos nd{ax + 16 cos 26) = 0,

i.e.,

+ «2«i = 8 cos (tt + 2)6 + a\ cos nd + 8 cos (n — 2)6

giving ai = 0, (n^l) since a\ is periodic. For the particular case » = 1 we have instead

ai = —8, but in this case we no longer require Oi to be zero.

Further coefficients a2, a3, ■ ■ • and the functions alt a2, • • • may be determined

by equating higher powers of q \ the general Mathieu function may thus be constructed

if desired.

10 Whittaker and Watson, loc. cit., p. 409.


