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NOTE ON THE PROBLEM OF HEAT CONDUCTION
IN A SEMI-INFINITE HOLLOW CYLINDER*

By ARNOLD N. LOWAN (Math. Tables Project, Nat. Bureau of Standards)

In a recent article1 C. J. Tranter determined the heat conduction in a semi-

infinite cylinder, in the non-steady case, by means of a combination of a Fourier

transform and a Laplace transform. Tranter's problem, and generalizations of it in-

volving more complicated boundary conditions, may be solved by a method which

was employed in an earlier paper2 and involves one Laplace transform only.

Let us consider the following generalization of Tranter's problem:

(1)
/ d2 1 d d2 \ d

k[—- -) 1   )T{r, z\t) = — T(r, z\t), a ^ r ^ b, z > 0, t > 0;
\dr2 r dr dz2) dt

T(r, z; t) = 0 for z = 0, a g r ^ b, t > 0; (2)

T(r, z; t) = 0 for r = a, t > 0, z > 0; (3)

T(r, z; t) - <p(z, t) for r = b, t > 0; (4)

T(r, z; t) =0 for / = 0, a ^ r ^ b; z = 0. (5)

The difference between A and Tranter's problem lies in the fact that in A the

boundary condition (4) involves a variable temperature.

Let us write

L{T(r,z\t)} = f e~ptT(r, z; t)dt = T*(r, z; p), (6)
J 0

L{<p(z, /)} = f e~p'(p(z; t)dt — <p*{z~, p). (7)
J 0

If the system A is acted upon by the Laplace operator L defined in (6) and (7), it is

readily seen3 that the Laplace transform T*(r, z; p) of the unknown temperature

T(r, z; t) must satisfy the system

/a2 1 d d2 p\

T*(r, z; p) = 0 for z = 0 and for r — a, (9)

T*(r, z; p) = <p*(z; p) for r = b. (10)

A*

If we write
^ h(\r)K0(\a) - I0(\a)K0(\r)

F*(a, b, r\ X) =  > (11)
I0(\b)K0(\a) - I0(\a)K0(\b)

where 70, K0 denote Bessel functions, it is easily seen that F*(a, b, r; X) sin /xz is a solu-

tion of the differential equation (8), satisfying the boundary conditions (9) when

X2 - m2 = p/k. (12)

* Received June 20, 1944.

1 C. J. Tranter, Phil. Mag. (7) 35, 102-105 (1944).
1 A. N. Lowan, Phil. Mag. (7) 24, 410-424 (1937). This article will be referred to as ANL.

' For details, see ANL.
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In view of the identity

2 ,, 00 /. 00

V*(z; P) = — I I <P*(a; />) sin /x2 sin /xad/xda,
IT J 0 0

and since F*(a, Z>, &; X) = 1, for r = & it follows that the expression

2 /•»/•«
r*(r, z; p) — — I I F*(a, 6, r; X)p*(a; />) sin /x2 sin nad/ida (13)

X */ 0 0

is a solution of the system ^4*. It now remains to subject (13) to the inverse Laplace

operator. If

(14)J e-'V^a, b, r; 0df = F*(«, J, r; X) = F* (a, b, r; ^ + -jj,

then by Borel's theorem4 the inversion of (14) leads to

2 /•«/•» /• <
T(r, z; t) = — I I sin juz sin nadfida j /^(a, &, r; ri)<p(a, J — i7)</tj. (15)

7T V 0 wo •/ 0

If

G>(a, b, r; t) = f FM(a, 6, r; y)dri, (16)
J o

the solution (15) may be written in the alternative form

2 r°° r°° r'd
T(r, z; f) =— I I sin /xz sin \iad\id<x I —G„(a, b, r; rj)<p(a; t — y)dr/. (17)

7T J o J 0 " 0 &V

From (16) it follows that

/. 00 2

e~ptG„(a, b, r\ t)dt = p~lL{Flt{a, b, r; t)} = —F*(a, b, r; X),
o p

whence in view of (11),

C in, , w Io(\r)K0(\a) - Io(\a)Ko(\r) Y(p)
p I e~p'GM(a, b, r\ t)dt =  =    (18)

Jo I0(\b)K0{\a) - Io(\a)Ko(\b) Z(p)

The formal inversion of (18) is

7(0) " Y (pi)e"i'
GM, t>, r; t) = + X) r \ , (19)

Z(0) ,_i pi[dZ/dp]p.Pi

where the summation extends over the roots of Z{p) =0. Making use of (12) and re-

membering that

Io(x) = Jo(xi), K0(x) = — Yo(xi) — (|irt — y + log 2)J0(ix),

where Jo, are Bessel functions, we obtain from (19), after some simple transforma-

tions,

1 See ANL, p. 413.
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. A 2 e-«^< Jo(a,a)J0(«tb)
G„(a, b, r\ t) = F*(a, b, r ; n) — tt 2_ on

n ' M2 JIM - Jl(a,b)

■ {Ma<r) YoM - J0(aia) Fo(a.-r) } - (20)

The complete solution of the system A is given by (17) in conjunction with (20).

In the particular case where <p(z, t) is a function of z only, (16) becomes

2 /. oo oo

T(r, z; t) = — I I G„(a, b, r; t)<p(ct) sin /iz sin fiadfida,
TT J 0 *^0

which is in agreement with Tranter's solution.

In a similar manner it is possible to treat the more complicated case where the

boundary condition (4) is replaced by

-—b T(r, z; t) = 0 for r — b

The formal solution corresponding to this boundary condition is in fact given once

more by (17), with the function GM(a, b, r; t) satisfying the integral equation

rx Y(p)
p\ e~p'G„(a, b, r \ t)dt = (21)

Jo Z{p)
where

Y(p) = h(\r)K0(\a) - I0(U)K0(\r),

Z{p) = a\{Ko(\a)U (Kb) - 70(Xa)^0' (Xi)

+ p{l0(\b)K0(\a) - h(\a)Ko(U)}.

The inversion of (21) proceeds in accordance with formula (19).

EFFECT OF A SMALL HOLE ON THE STRESSES
IN A UNIFORMLY LOADED PLATE*

By VLADIMIR MORKOVIN (Bell Aircraft Corporation)

In a paper of the same title Martin Greenspan recently1 determined the stress

distribution in a large, uniformly loaded plate weakened by a small hole of an ap-

proximately ovaloid shape. Greenspan employed a rather laborious method of piecing

together particular solutions of the biharmonic equation for the stress function until

all the boundary conditions could be satisfied. This process would become prohibitive

in case of more complicated boundary conditions. It is the purpose of this note to

apply to the same problem the elegant and more general, yet not well known, method

for solving plane problems of elasticity which is most often associated with the name

of N. I. Mushelisvili.2

* Received July 5, 1944.

1 This Quarterly, 2, 60-71 (1944).

2 See for instance N. I. Mushelisvili, Math. Annalen, 107, 282-312 (1932). For detailed English ex-

position see I. S. Sokolnikoff's Mathematical theory of elasticity, (mimeographed lecture notes, Brown

University, 1941), pp. 243-318.


