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KRON'S METHOD OF SUBSPACES*
BY

BANESH HOFFMANN
Queens College, Flushing, N. Y.**

Introduction. Gabriel Kron has introduced new and powerful methods of applying
tensor analysis to complicated engineering problems, presenting his major contribu-
tions in the field of electrical engineering. The manner of presentation, and the rarity
of a simultaneous knowledge of the hitherto almost unrelated subjects of electrical
engineering and tensor analysis, have unfortunately served to limit his audience.
Recent experimental confirmation of some of his investigations dealing with equiva-
lent circuits, however, has attracted the serious attention of a wider engineering
following.

In view of the growing importance of the whole subject, and of the controversy
which has surrounded it, it has seemed desirable to present some particular aspect
of Kron's work in a form which may appeal to a less highly specialized audience. To
avoid complications as far as possible, the present paper must ignore such important
topics as electrical networks, electrical machines, and equivalent circuits. It confines
itself to purely dynamical problems, and to that particular idea of Kron's which may
be called the method of subs paces.]

Much discussion has arisen over Kron's claim that he uses tensor analysis. It is
the considered opinion of the present writer that Kron does indeed make a full and
proper use of tensor analysis. Possibly the belief that Kron employs only matrices
may have arisen from the fact that, in order to present his actual mathematical
procedure in a form that may be understood and used by those not familiar with the
intricacies of the tensor calculus, he often presents this procedure in matrix form.
However, he is always careful to point out that the underlying concepts are wholly
tensorial in character. In the present paper the method of subspaces will first be pre-
sented in terms of a simple example, and in purely matrix form, merely as a set of rules
of procedure, the essentially tensorial significance of the procedure being discussed
only after the actual procedure has been brought before the reader. The theoretical
discussion will then be followed by three simple, related examples illustrative of
various aspects of the method.

Scope of the method of subspaces. Let us consider a system, which may be dy-
namical, electrodynamical, or otherwise, containing several standard parts, such as a
fly-wheel, a governor, a pair of synchronous machines, a system of levers, etc. The
equations of performance of the individual parts are usually well known, but the
equations of performance of the complex whole will depend on the manner in which
they are interconnected. Usually it is extremely difficult to trace out the full influ-
ence of each interconnection in setting up the equations of performance. The method
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t Purely dynamical examples of the method of subspaces have been given by Kron in an unpub-
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of subspaces suggested by Kron yields the equations of performance by a routine and
quite straightforward manipulation of the known equations of performance of the
constituent parts of the system, a brief inspection sufficing to yield all needed informa-
tion as to the manner of interconnection.

Simple dynamical example. To illustrate the actual mathematical procedure in
its simplest form, we shall first consider a quite trivial dynamical problem. Naturally
it will not reveal the power and economy of the method any more than it would the
peculiar virtues of, say, the Hamilton-Jacobi equation, were that applied to it. But
it will serve to bring the routine mathematical procedure before us without unneces-
sary distraction from complexities which are merely incidental.

Let us consider the dynamical system 5 consisting of three particles free to move
on a line, the masses being m,\, m2, m3, the coordinates1 x1, x2, x3. and the forces f\,fz,f3.
The equations of motion are

fi = mix1, /2 = mix2, f3 - m3x3. (1)

Let us consider now the new dynamical system S which arises when the particles
2 and 3 are made to coalesce. Its equations of motion may be written down at once:

fi = mix1, fi + fi = (»»2 + tn3)x2. (2)

Let us suppose, though, that it had been a highly complex system of interconnected
simple parts. We would then welcome a routine method of obtaining (2) from (1)
which required no detailed thought and avoided constant preoccupation with the
effects of the interconnections. The method of subspaces would be applied to the
present problem in the following routine manner:

The first step is to write equations (1) of system S in matrix form,

F = MX, (3)
i.e.,

" »l 0 0 —f1— -i11 —'

0 0 x
- 0 0 m3 —li— x° -i

xl

y.2
rAi

ft
L- ft -J

(4)

where, it will be noted, the masses form a square array rather than a single row or
column such as one might at first expect.

Next, a relationship is set up between the coordinates x1, x2, x3 of S and the co-
ordinates x1, x2 of 5. This relationship can be taken to be

x1 = x1, x2 = x2, x3 = x2 (not £3). (5)

From this is obtained the matrix C defined by

X = CX. (6)
It is

r l On
c = 0 1

L 0 1
(7)

1 We use the tensor practice of placing the indices of contravariant quantities above the symbol.
x1, xz, x3 do not stand for x, x-squared, x-cubed.
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If we denote the transposed matrix by Clr, then the new forces fi, ft are given by the
routine matrix multiplication

rioo-|r^1-| r /! n
F-C"F- ft =L o i i J L /, + /, J

L / 3 -1

The new masses are given by routine matrix multiplications as follows:

(8)

M = CtrMC
- mi 0 0 _

0 m-i 0
- 0 0 m3

r l o-i

r l On
0 1

L o l

r l o o
~ L o l l

rwiOO" ^ ^ r «i o
L o m2 m3 J L 0 m2 + m3 J

L 0 1 J
(9)

Finally the new equations of motion are

F = Ml, (10)
i.e.,

r- 0 ir?i-r h !
L 0 m2 + m3 J L x2 J L ft + /3 J

This yields the two equations

mx1 = fi, {mi + m3)x2 = ft + f3,

which are equivalent to (2) above.
The tensor form of the problem. Using Latin indices for the range 1, 2, 3, and

Greek for the range 1, 2, we may write the various expressions and equations above
in the familiar index notation of the tensor calculus.

The equations of motion of 5 may be written2

fa = mabXb, (1')

the matrix C may be written
a dXa

Ca=  > (70
dx"

and the relations between the forces, etc., in 5 and S may be put in the form

dxa dxa dxb dxa r
fa = — fa, (8'); rnafs =   —mat, (90; x' = —xa. (6').

dxa dx" dx& dx"

Also the equations of motion of 5 are

fa = fna^. (10')

Provided we interpret the time derivatives as absolute derivatives, or alterna-

2 According to the summation convention of the index notation, a repeated index in a single ex-
pression indicates summation over its whole range of values.
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tively, as is permissible in the present simple case, provided we avoid non-linear
coordinate transformations, the above have the form of tensor equations and ten-
sor transformations. The mere fact that the work can be expressed in the tensor
notation does not, in itself, imply tensorial character. The essential criterion of tensor
character is the tensor law of transformation. In view of (7'), equations (8'), (9'),
and (6') are tensor transformations, and equation (10') is the result of transforming
the tensor equation (1')- The fact that C is singular does not destroy the tensor
character of the transformations; its significance will appear shortly.

The tensor theory. Since tensor equations have objective significance we may
look for a geometrical picture of the process described above. Naturally this will be
sought in configuration space. The basic tensorial and geometrical significance of
Lagrangean dynamics being quite familiar, the corresponding significance of Kron's
method may be explained here quite briefly.

As is well known, in Lagrangean dynamics the motion of the dynamical system 5
is represented by the motion of a point in a three dimensional configuration space, K,
having xa as coordinates and mab as metrical tensor. When particles 2 and 3 coalesce,
the system 5 loses one degree of freedom and becomes the system S. Thus the
trajectory of 5 belongs to a two dimensional configuration space, K, which is in fact
a subspace of K, for it is defined by a relation (in more general cases, by a set of
relations) between the coordinates of K. Specifically, the subspace here is defined by
the relation

In parametric form this subspace is given by the relations (5) above, which represent
the three coordinates x" as functions of the two variables x". (Compare with the rela-
tions x = cos 0 cos <p, y = cos d sin <p, z = sin 0 which express the Cartesian coordinates
x, y, z as functions of the two parameters 6, (p. This defines the two dimensional sub-
space of ordinary three dimensional space constituting the surface of a unit sphere.)

By the well known theory of subspaces, the projections of the covariant tensors
fa, are given by the singular transformations (8'), (9')- Thus the equations of
motion of S are the projection on K of the equations of motion of S. And, since the
initial conditions of S and 5 coincide in K, the trajectory of 5 is the projection on K
of the trajectory of 5.

There are two waya of viewing the relationship between the systems S and S:
(a). We may regard 5 as the same physical system as S, the forces between

particles 2 and 3 which keep them together being included explicitly in the force
vector fa- The trajectory of S in K is then identical with that of 5 in K.

(/3). We may regard S as a different physical system from S inasmuch as
particles 2 and 3 are not united in S. The forces in S are the same as those in 5
except for those forces in S which tend to separate particles 2 and 3. These
latter forces have components in K which are normal to the subspace K, and thus
have zero projection on K.

Both viewpoints are of significance, and more will be said about them later.
A formal proof. A formal proof will now be given that the transition to a sub-

space and the tensor transformations that go with it, are justified in the general case.
This proof will thus also justify the general procedure given by Kron, of which the
above example was a particular illustration.
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The proof will be made brief by basing it on certain standard results in dynamics
and tensor analysis.

Let us consider a rigorous proof of the validity of the Lagrangean equations, such
as is given, for instance, in Whittaker's Analytical Dynamics, third edition, starting on
page 34. We are concerned here with the case in which t does not enter explicitly,
and we shall use the tensor notation. The dynamical system under consideration in
Whittaker has n degrees of freedom, and n generalized coordinates. Let us denote
the latter by A", using the Greek indices a, /3, y for the range 1 to n. We denote the
number of individual particles in the system by N/3, so that their combined coordi-
nates number N and we denote these N coordinates by P, using X, n, v for the range
1 to N. In this notation, the proof of the Lagrangian equations has the following out-
line:

The equations of motion of the N/3 individual particles, in a self-explanatory
notation, have the form ___

rh\*x» = fx. (11)

These N equations are not independent, since the N coordinates xx are related, as
are the N forces fx. The relations between the coordinates icx are defined by equations

xx = x^ix") (12)

which express them in terms of the n generalized coordinates of the system. (These
correspond to Whittaker's equations *<=/,(gi, qit ■ ■ ■ , qn, t), etc., with t omitted.)
From (12) may be computed the quantities dx^/dx". The equations of motion (11)
of the individual particles are multiplied individually by such quantities and then
added in groups, the process being precisely that described by the equation

dz* .. dxx _
— mx„x" = —- /x, (13)
dx" dx"

where the summation convention is employed, as usual. After some manipulation,
the left-hand side is then reduced to the standard Lagrangean form, and the right-
hand side is interpreted as a set of generalized forces in the familiar manner.

Later, on page 39, Whittaker gives an explicit form of the Lagrangean equations
for the case in which t does not enter explicitly. This reveals that the left-hand side
has the form of a covariant derivative with respect to map as metrical tensor. The
equations, in fact, may be written

rha^,yx^ = /„. (14)

Since, in the original form (11), the coordinates were Cartesian for each individual
particle, the ordinary derivatives there coincided with the covariant derivatives; thus
(11) may be written as

mxhx",,x' = fx, (15)

the subscript preceded by a comma here denoting the covariant derivative with re-
spect to mxP as metrical tensor.

It will be observed that the initial step, represented by the equation (13), is a
transition to a subspace, complete with a singular transformation matrix dxx/dx"
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of the type which, for some reason, excites the critics of Kron when it is used by him.
The relations between in\„ and ma$, and between fx and /„, follow from the analysis
and are the usual tensor transformations, with singular transformation matrix.

Now Lagrange goes from an initial configuration space of N dimensions to a final
subspace of n dimensions in one step. Kron's idea is, in theory, simply to make this
transition in more than one step, using subsidiary subspaces as resting places when
the mathematics tends to become too complicated. For example, he would, in theory,
go from the first space having coordinates 3cx to an intermediary subspace having
coordinates xa and then to the final subspace having coordinates x" which is also a
subspace of the intermediary subspace. In practice, of course, as is also the case in the
Lagrangean method, the initial space having coordinates xx is entirely neglected,
having served its sole purpose in providing the theoretical basis for the equations and
procedures actually used.

Since3
dxx dx° dJx

dxa dx" dx"

the transition in several steps will yield the same result as the transition in one step,
the various tensors involved being transformed according to the standard tensor law.

Thus the proof of Kron's theory and procedure is a direct corollary of the proof
of Lagrange's equations and the tensor theory of subspaces.

The proof given in Whittaker is based on viewpoint (a), since the forces /x be-
tween the individual particles are regarded as the forces actually existing between
them in the ultimate system. The trajectory in the N dimensional space is actually
confined to the n dimensional subspace.

It is important to note, though, that the proof is equally valid for viewpoint (/S).
For those forces which do no work do not contribute to the values of the generalized
forces of the ultimate system. Since they do not affect the ultimate system, it is clear
that, for the purpose of setting up the equations of that system, they may be omitted
from the N basic equations of the individual particles. When these forces are ignored,
however, the forces between the individual particles are very much changed, espe-
cially in the case of inelastic bodies. The system of individual particles is then no
longer physically equivalent to the ultimate system. It has a quite different motion
(for instance, the particles of a rigid body here move in divergent directions) and its
trajectory, in general, spans the whole N dimensional space. Nevertheless, according
to the above reasoning, the projection of its trajectory on the n dimensional sub-
space coincides with the trajectory of the ultimate system.

Non-linear transformations. Since Kron has made the widest application of his
method of subspaces to electrical networks and other electrodynamical problems in
which the interconnection transformation is very often linear, the impression has
sometimes arisen that the method is applicable only to situations in which this
linearity is present. The following examples of the method involve non-linear trans-
formations. They are simple enough so that the more usual methods of solution are

5 When the transformations are non-singular, this is the basis of the important "group property" of
tensor transformations. In the absence of inverses the term "group" is inappropriate here, but provided
the succession is always to a subspace of the preceding space or subspace, as it always is here, the
usual combination properties of tensor transformations are preserved.
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hardly more complicated than those by Kron's method, but this is inevitable in simple
problems. The power of Kron's method begins to be felt when the systems in question
involve a larger number of interconnections, and of more complicated mechanisms
than the simple rods of the examples below.

7 Illustrative example I. We begin with
a system consisting of two rods hinged
together without friction, one rod being

-r—   —y suspended by its free end from a fixed
\ point 0 (Fig. 1). We denote the masses
®\ of the rods by mi, mi, their lengths by

2oi, 2a2, and their moments of inertia
about their centers of gravity, which we
shall assume to coincide with their mid-
points, by 11, Ii. In addition to gravity,
let us consider a force F, not necessarily
conservative, which acts horizontally and
to the right at the mid-point of the lower
rod. The system has two degrees of free-
dom, and we may take as the generalized
coordinates the angles 6, <p which the

Fig. t. System I. ro{js make with the vertical.
The problem is to set up the equations

of-motion. From previous experience with Lagrangean dynamics, we may regard a
single rod as a known system, in the sense that we can instantly write down its equa-
tions of motion, or have already tabulated them for quick reference. The present
system consists of two of these
known systems interconnected. We
therefore begin by considering the
system consisting of the two rods
not interconnected, the forces being
the same as those acting externally
on the original system.4 Kron calls
this system the primitive system.
It is shown in Fig. 2, and has here
four degrees of freedom. We may
take the four generalized coordi-
nates to be the angles 6, <p above
together with the coordinates y, z
of the center of gravity of the lower
rod. We let Latin indices refer to
the primitive system, and Greek
to the actual system under discus-
sion. For the primitive system the
metrical tensor and the force vector can be written down at once. They are

Fig. 2. Primitive system of system I.

4 In general one must include all forces that do work, including dissipative forces.
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Ix + m^a\

mab

mi

m2

(16)

and
— migai sin 6

u =

m2g

(17)

The restraint arising from the interconnection of the two rods imposes the following
two conditions on the four coordinates x" of the primitive system:

y = 2ci sin 8 + a2 sin <p, z = — 2oi cos 9 — a2 cos <p. (18)

These two equations define the subspace of the configuration space of the primitive
system to which the given system is confined. We may express them in the form of a
transformation, that is to say, in parametric form, by writing

6=6, ip = <p, y = 2«i sin 6 + a2 sin ip, z = — 2a\ cos 6 — a2 cos Tp, (19)

which is of the form
xa = xa(xa). (20)

The transformation matrix C°, or dxa/dxa, is (in the form Ctr)

xa

dxa

die"

e

0

<P

1
2«i cos 6

a-i cos (p

2ai sin 6

a2 sin <p

<21)

Thus the metrical tensor for the given system, namely the projection ma& of tnab, is
given by

_ dx" dxb
^a/i Wtab,

dx" d&
i.e.,

~Ii + miai 0 0 0 ~
0 /2 0 0

0 0 m2 0

0 0 0 m2 _

fl 0 2«i cos 6 2ai sin 0"]
ma0 = I _

L0 1 a2 cos <p a2 sin

2 " ~ r 1 0 n

0 1
2a\ cos 6 a2 cos p

J2ai sin 6 a2 sin 7p _
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[Ij + 0 2d\m2 cos 6 2d\m2 sin 0"1

0 /2 a2»t2 cos lp a2w2 sin <pj

1 0 ~|
0 1

2«i cos 6 a2 cos lp

_2a\ sin 6 a2 sin

[I\ + mya\ + 4w2ai 2m2ala2 cos (6 — <p)"j ^

2mtaia2 cos (0 — ?) /2 + *»2al JL2w2aia2 cos (0 — 7p)

Likewise, the force vector is given by

_ dx"
J" = —f<"dx"

or
— migdi sin

0
F

L - m2g

— (mi + 2m2)gd\ sin d + 2aiF cos 6 "1

a-tF cos <f — a2m2g sin <p J

_ ri 0 2ai cos 0 2a\ sin 0"j
LO 1 a2 cos <p a2 sin

-[ (23)

The kinetic energy function of the given system is

T = \ma$xax?

— 5(^1 + a\ + 4m2ai)e2 + 2vhdi<h cos (0 — v)dlp + i(/2 + nh<£) <P2- (24)

The Lagrangean equations for the given system may now be written in the usual
form.6 They are, on dropping the bars over 0 and <p, but without simplification,

— {(/j + Wiflj -f- 4^0,1)6 + 2w2ai02 cos (6 — <p) <p } — { — 2m2aia2 sin (6 — <p)6<j>}
dt

— — (wi + 2mi)ga\ sin 8 + 2d\F cos 9,

— {2maiCh cos (0 — <p)6 + (/2 + m2a|) <p } — { 2m2aia2 sin (6 — <p)6<p }
dt

= <hF cos <f> — a2nhg sin <p.

Since no forces were introduced at the points A, A' of the primitive system, the
latter was physically different from the given system, for in the given system opposite
forces acted at the hinge A. Thus we have been using viewpoint (/3). To make the
two systems physically equivalent, it would be necessary to impose appropriate initial
conditions on the primitive system and to introduce the proper opposite forces at
A and A' corresponding to the reactions at the hinge in the given system. This,

6 Kron has suggested another method having advantages when the system and its interconnections
are complicated.
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however, would entail a knowledge of the reactions at A, and the advantage of the
(/S) viewpoint, which makes it the more appropriate viewpoint for the Kron method
here, is that it enables one to proceed without bringing in the reactions at all, except
indirectly insofar as they imply the equations of constraint. It is possible to use view-
point (a) by introducing unknown opposite reactions at A and A' in the primitive,
denoting them by some symbol, say R and — R; they will automatically cancel when
the transition is made to the subspace.

To give some indication of the flexi-
bility of the Kron method and its ability
to extract cumulative dividends from
such calculations as may previously
have been performed, we conclude with
a brief and sketchy discussion of two
further systems.

Illustrative example II. Let us con-
sider the system illustrated in Fig. 3.
It is the same as system I above except
that the end of the lower rod is con-
strained to move without friction on a
fixed vertical line distant 2c from 0.

System I has already been investi-
gated. It is now a known system. In-
stead, therefore, of taking the primitive Fig. 3. System II.
of system II to be the same as the
primitive of system I, we may take it to be system I itself.

The new constraint reduces the number of degrees of freedom to one and may be
represented mathematically by the condition

Oi sin 8 + at sin <p = c. (25)

The subspace now can be written parametrically as

(c — sin 8)6 — S, <p = sin_1-| 1, (26)

The transformation matrix C is given by

dtp — cos 8
X = — = , • (27)

dd Va\ — (c — ai sin 0)*

By implicit differentiation of (25) we may also obtain the useful relation

a i cos 6 + a2\ cos <p = 0. (28)

The new metrical tensor m„T (which here has only one component) may be obtained
by the usual transformation formula, or the new expression for T may be obtained
directly from (24) by substituting for <p and <p in terms of 8 and 8 by means of (26),
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the latter method being the simpler in this particular problem. The generalized force is

_ — (wi + 2m-i)ga\ sin 0 + 2aF cos 0~1/» — U M „
L ait cos (p — a?.mig sin <p J

= — (wi + Imijgay sin 6 + 2a\F cos 6 + cos — \a1tn2g sin <p

a\tri2g(c — ai sin 0) cos 9
= — (tn 1 + 2m2)gai sin 6 + a\F cos 6 -\  _ > (29)

V a* — (c — ai sin 8)2

the terms in F partially cancelling in view of (28). The equation of motion may now
be written down in the usual manner. Solving it is another matter!

Illustrative example III. The preceding example made use of system I in the role
of a known system, and essentially dealt with the imposition of a constraint on that
system. One may, however, join several known systems together by the Kron method,
and this is, in fact, the procedure of principal importance in practical problems. To
illustrate the idea, let us outline the method of attack on the system shown in Fig. 4,

Fig. 4. System III.

the points O, D being fixed, and motion being confined to a vertical plane. This
system may be regarded as system I interconnected with another system of the same
type. Thus the primitive may be taken to consist of two systems of the type I, as
shown in Fig. 5. For each system of type I the metrical tensor and force vector are
known, being of the form (22) and (23). For brevity, we denote them in shape only
by the following symbols:

P-i ]• P'24 [■*■].
Then for the whole primitive system the corresponding quantities are
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(1)

0
L o

0
0

(2)

(1')

(2').

which, of course, may be written down at once. The configuration space of the present
primitive system is the direct product of the configuration spaces of the two systems
of type I.

Fig. 5. Primitive system of system III.

The interconnection of the two systems at B introduces a single constraint, and
by the method of subspaces the equations of motion of system III may be obtained
in a routine manner.

The problems discussed above involved only very simple interconnections. When
the interconnections are numerous and complicated, and the elements interconnected
are themselves known complex dynamical, electrodynamical, or hydrodynamical sys-
tems, Kron's method of subspaces assumes the highest practical importance. In con-
cluding the author wishes to thank Mr. Kron for many stimulating discussions of his
work extending over several years.

Added April 12, 1944. While the general mathematical theory underlying Kron's
method of subspaces as applied to dynamical systems is implied in the "Formal Proof"
of the present paper, it is not there given in explicit detail. Professor Synge of the
Ohio State University has suggested that a more explicit proof be included which
goes directly to the mathematical basis of the method, and has kindly communicated
the following outline of a method of proof from a different point of view which will
be of interest to mathematicians wishing to see clearly what is fundamentally in-
volved mathematically.

Let (a, b) (e, /) (i, j) take three different ranges of values, with the usual summa-
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tion convention for each. Let there be two independent holonomic dynamical sys-
tems:

I. Coordinates:*",
K. Energy: Ta) = hmabxaxb,
Generalized forces: X„.

II. Coordinates: x',
K. Energy: Tw = \mr!x'x',
Generalized forces: Xe.

Let us define, with D=d/dt,

Sa = D(dTn)/dx") - dTw/dx°,
(A)

Se = D(dT {t)/dxe) — dTm/dx".

Then the equations of motion of I and II are Sa = Xa, Se = Xe-
Now establish constraints between I and II, the reactions of constraint being

workless. These constraints may be written

xa = xa(x'), xe — xe(x*),

where x' are the generalized coordinates of the system III resulting from the combina-
tion. Write

C° = d xa/ d x\ C' = d x? / d x\
We have then

y O —•V V/ , vv V/ «

It is easy to prove that

DC" = dx"/dx', DC\= dx°/ d x\

Cat = dxa/dx', C\ = dx'/dx'.

Let X'a, X'e be the reactions due to the constraint. We have

X'a8x°+ X'e8x° = 0

for any displacement satisfying the constraints, i.e., for

5x" = C'Bx*, hoc? = C'tSx\
Hence

x'acat + = o.

Now the equations of motion of I and II under the constraint are

+ X'a, Se = Xe+ X'e,
and hence

s0c? + s.ct = xacf + x.q. (C)
We have for system III:

Coordinates: x\
K. Energy: Tm = %mijxix>,
Generalized forces: Xi.

Let us define
Si = D(dT (3)/dxi) — dT(3)/dx\

(B)
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Our problem is to show how S„ Xi are to be computed in terms of the elements of I
and II. (We know from dynamical theory that 5, = A',, but we can forget this knowl-
edge, as we prove it incidentally below.)

We have
y(8) = T (l) + T (»),

and hence
ma = mttbCatCbj + (D)

It is easily.seen by direct transformation that

5. = SaC} + S.C,. (E)
By considerations of work we have

XiSx' = XJx" + X.Sx',

and so
Xi = XaCi + X.Q. (F)

Hence by equation (C), we have, as equations of motion of III, 5, = X„ where 5,- and
Xi are given by (E) and (F). The transformation of the metric is given by (D).

We may sum up essentially by saying: Metric and force transform by (D) and (F)
when two systems are linked by workless constraints. The extension to the linkage of
any number of systems is immediate.


