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LATERAL BENDING OF SYMMETRICALLY
LOADED CONICAL DISCS*

BY

K. E. BISSHOPP
Fairbanks, Morse & Company, Beloit, Wisconsin**

1. Introduction. The general theory of lateral bending for thin circular plates of
variable thickness is given in Timoshenko’s book,! “Theory of plates and shells,”
where also may be found numerous references to the literature of the subject. Of
particular interest is a reference to Féppl who indicated the analogy existing between
the rotating disc problem and that of lateral bending in a circular plate of variable
thickness. Comparison of the solution for the rotating conical disc problem with the
corresponding one for lateral bending shows that the basic differential equations in-
volved, and the expressions for the stresses, are analogous. Therefore, previously de-
scribed methods? for obtaining solutions of the former problem in terms of hyper-
geometric functions are applicable to the latter problem. It will appear later that the
special type of hypergeometric differential equation associated with the lateral bend-
ing problem has solutions which give the stress coefficients with less labor than in the
case of the rotating conical disc.

The stress coefficients have been arranged conveniently for numerical calculation
of conical discs, which are component parts of a wide variety of engineering struc-
tures. The head of a large poppet valve provides a particular example where the
principal stress member can be approximated by a system of incomplete conical
discs. In order to illustrate an application of the theory, stress coefficients for conical
discs subject to lateral bending as well as for rotating conical discs will be used to
estimate stress distributions in a steel valve head of constant weight and various
proportions. Since the coefficients are obtained from solutions of differential equa-
tions for thin discs, the approximate method breaks down in the neighborhood of the
valve stem. These limitations have little effect near the periphery, which makes it
possible to calculate valve proportions corresponding to approximately uniform stress
distribution throughout the head. The description of the illustrative example at the
end of the paper explains the method of calculation in detail.

2. Derivation of differential equation. Let M, and M, denote radial and tangential
bending moments per unit length acting on an element of a circular plate at distance
r from the center; then if Q is the corresponding circumferential shearing force per
unit length, the equation of equilibrium is

M.+ rdM,/dr — M, = — Qr. 1)

If w denotes downward deflection of the middle surface, then

* Received Jan. 29, 1944.
** Now at Armour Research Foundation, Chicago, Ill.
! Timoshenko, Theory of plates and shells, McGraw-Hill, 1st Edition 1940, Art. 54, p. 282.

t K. E. Bisshopp, Stress coefficients for rotating discs of comical profile, Journal of Applied Mechanics,
Vol. 11, No. 1, March 1944, pp. A1-A9.
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where ¢ is Poisson’s ratio, ¢ = —dw/dr and D=Eh?*/12(1—¢?), E being Young's
modulus and & the thickness of the plate; D is called the flexural rigidity.

In the case of a conical profile, & is a linear function of r, so that substitution
from Egs. (2) in Eq. (1) gives

i) LD o

In order to reduce this equation to non-dimensional form, we introduce the radius R
to the knife edge of the disc and the thickness ko at the center. If »/R=x, then
h=he(1—x), and Eq. (3) becomes

d% 1 3 \de 1 30 _ 120R*(1 — o?) ]
a-l-(:-;l—x);i;—(;_'-x(l—x))‘p— ER(1 — 2)° @

For any particular type of symmetrical loading the shearing force Q is a function
of x alone. The maximum radial and tangential bending stresses S, and S; are ob-
tained from the general solution of Eq. (4) with the aid of Egs. (2) and the relations

S, = 6M./h?, S = 6M/ k2. (4a)

The problem of a conical disc supporting a concentrated vertical load P at the
center has some interesting practical applications. In this case Q =P/2nr=P/2wRx,
and Eq. (4) becomes
' 1—=z 6PR(1 — %

+ 3”)"’ =T Emi-n O

d% de
x(1 — x)E-I-(l-—llx)-‘;;-—(

It can be verified by substitution that a particular integral of Eq. (5) is

2PR(1+a)(2—3cr 1 1 )

ERI—3\(U -2 Tz T 1=2/)

ea(x) = — (6)
The auxiliary equation, the solutions of which are independent of the type of loading,
is obtained by setting the right hand side of Eq. (S) equal to zero. After making the
substitution ¢ =xF, we obtain

2

a’F dF
z(1 — x);-x—z+3(l—2x)z—3(l+a)F= 0, )

which is recognized to be of hypergeometric type.
3. Complementary functions. Equation (7) is of the form

d’F dF
2(1—2)—+[c—(a+ b+ 1)x]— — abF =0,
dx? dx
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where ¢ =3, a+b=35, and ab=3(1+40). The first solution can be represented by a
power series; the integral exponent difference? 1 —c= —2 shows that the second solu-
tion contains a logarithm.* In the notation of the hypergeometric function, the first
solution is

ab a(a+ 1)b(d + 1)

—

1-¢ 1-2-¢c(c+ 1)
which converges absolutely and uniformly when ]xl < 1. The asymptotic behavior of
the hypergeometric function in the neigborhood of its poles is given by*

T'e)T(e +b —¢)
Fle, b &%) ~ =5 05T 0

whenever c¢—a —b is an integer less than zero, I'(z) being the well known gamma
function. Thus Fi(x) has a second order singularity at x =1 such that,
T(3)r(2) 2(1 — x)~2%sin ar

o~ rare T T e s e -6

Fi(x) =F(a, b,¢c,2) =1+ - (8)

(1 = x)=, )

(10)

which may be used to approximate the function for values of x near unity. The
presence of singularities of lower order in the remainder term for Fi(x) makes this
method unsuitable for accurate numerical work. Better approximations for similar
functions with second and third order singularities are given in Ref. (2).
The logarithmic solution® of Eq. (7) ist
(ab — 4)(ab — 6) 1 ab—-6

Fy(x) = — Fy(x) log, x + — —
2 x?

— (), (11)

where

> (n+e—3)---(6=2)(n+b5—-3)---(b—2)
x

gx) = X

=2 nl(n — 2)!

", (12)

and

Pa=yY(n—3+a)+¥(n—3+0) —¥(n) —¥(n—2)

ORI S SR
Ca—-2 +n—3 b—2 b+n—3
1 1 1 S
_l_— ... = el e (13)
2 n 2 n—2

The principal part of expansion (11) shows that F,(x) has a second order singularity
at the origin. The nature of the singularity at x=1 can be recognized by observing

® Whittaker and Watson, 4 course of modern analysis, Cambridge, England, 4th Edition, 1927,
p. 198.

* When o =1/3 both solutions can be expressed in terms of rational algebraic functions.

* Titchmarsh, Theory of functions, Oxford, England, 1932, p. 224.

5 Forsyth, Theory of differential equations, Cambridge, England, 1902, vol. 4, part 3, p. 147.

t The numerical value of ¢ is used since it is independent of Poisson’s ratio o.
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the limiting form of the nth term of g(x) which is proportional to that of Fi(x) pro-
vided limn., ®, remains finite. That this is the case can be shown with the aid of the
logarithmic derivative® of the Gamma function, which gives

1 1° 1
lim &, = 2( + +—-> — 2y — 2¥(a) — = cot ax, (14)
n—w a—2 a-1 a

where ¥(a) =T"(a+1)/T(a+1) and v is Euler’s constant. Thus Fy(x) has a second
order singularity at x=1 of magnitude

. sin ax .
Fi(2) ~ — lim &, - /(l — x)2 (15)

z—1 n—so

The slow convergence of the power series near the singularities of Fy(x) and Fx(x)
makes numerical evaluation of the stress coefficients for all values of x between zero
and unity exceedingly difficult, in spite of available asymptotic approximations. One
scheme for removing this difficulty would be to construct from the transformed differ-
ential equation (7) two new solutions of argument 1 —x-and combine them linearly
with Fi(x) and Fa(x), as described in Ref. (2). This differential equation is invariant
under transformation by 1 —x, which brings about added convenience of calculation;
however, considerable further reduction in computation can be accomplished by ex-
pressing Fi(x) and Fu(x) in terms of symmetrical hypergeometric functions.

4. Solutions in terms of even and odd functions. Whenever 2c=a+b--1, which
condition is satisfied by Eq. (7), the transformation (1 —2x)?=1reduces the standard
form of the hypergeometric equation to

@F [1 [fa b dF b
(- —+|==(=+—=+1)t|l—-—=F=0. 16
a-0 G +[3-Grar )T -5 a9

The solutions of this equation as functions of x are?
F{io, 3b, 3, (1 — 220)?} =Gi(x), (1 —20)F{}(a+ 1), $(d +1), § (1 = 22)*} = Gx(2).
This shows that G,(x) =G1(1 —x) and Gi(x) = —G:(1 —x). Since oply functions of x are

involved,
Gl(x) = ClFl(x) + Cze(x)v
Ga(x) = D\F\(x) + DyFs(x),

where .Ci, C:, Dy, D, are constants; Gi(x) and Gi(x) are respectively even and odd
relative to the point x=1. The series for Gi(x) and G:(x) are very convenient for
computation when .25 <x <.50, while those for Fi(x) and Fi(x) are equally so when
0=x=<.25. Since the G’s are symmetrical it is necessary to compute only one half as
many fundamental values for constructing tables of stress coefficients as would be
required with the F's. From this point on therefore, the F’s are subordinated to the
role of “helping functions,” while the G’s form the basis of all subsequent calculations.

Returning to Eq. (17), we employ the familiar method of comparison of singulari-
ties for evaluation of the linear factors. It is apparent from the character of the F's
that the G’s have second order singularities at zero and unity whose values may be
deduced from Eq. (9). After some reduction, we obtain

¢ Ref. 3, p. 246.
7 Ref. 3, p. 297, Example 7.

17)
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C = V7 T(e)T(b) [1 + lim @, sin ar]'

T 3r(3a)T(3b) b x
C: = Va/[16P(3a)T3)], | 5
VrT(@)T(h) - [ - . sin ar]
D1 = - 1 — lim q’,. — 1,
64T {i(e + 1)}T{30 + 1)} — ™

D: = V/x/[32r {3(e + DIT {30 + D}].

The functions Gi(x), Ga(x), and their derivatives are tabulated in Table 1.

Since the F's and G’s are linearly dependent, xG1(x) and xG,(x) are fundamental
solutions of Eq. (5), from which, by use of Egs. (2) and (4a), the stress coefficients
follow immediately.

5. Determination of the deflection functxons. The deflection w(x) can be expressed

in the form

w(x) [wx(x) + ‘wz(x) + 'ws(x)] (18a)

where w(x) and wz(x) arise from the complementary functions respectively, and
ws(x) arises from,the particular integral. The calculation of ws;(x) presents no diffi-
culty, since only elementary functions with known integrals are involved. Direct in
tegration of Eq. (6) gives

2PR(140) [2— 3¢ x
log. — |. 19
TER(1 — 30)[ o] ] (19)

a(x) = — [ ou@)iz =

1—x —
The construction of the deflection functions w;(x) and w.(x) is considerably more diffi-
cult, since it is necessary to evaluate integrals of the type [xGi(x)dx (i=1, 2), which
involves additional infinite series. For purposes of computation, a convenient proce-
dure, that also has the advantage of being easy to check, is to use a combination of
analytical and numerical methods. A prerequisite for this calculation is a fairly ex-
tensive and accurate tabulation of the G’s.

A straightforward step by step numerical integration process is seen to fail near
the poles of the G’s, due to the presence of ordinary singularities in the integrands.
The procedure for constructing the functions w;(x) and w,(x) in tabular form con-
sists of removing these singularities analytically and integrating the resulting func-
tions numerically.

6. Removal of singularities from the integrands of [xG,(x)dx and [xGy(x)dx. Let
us consider a “substracting off” function H,(x) which has the property that
Gi(x) —H,(x) is bounded uniformly, i.e., without finite jumps, throughout the in-
terval of existence of Gi(x). It is necessary that Hi(x) be continuous except for poles
which are of the same order as, and coincide with, those of Gi(x). This specification
is not sufficient however, since at every point of the interval the difference
Gi(x) —Hy(x) is finite, which requires the principal parts of Gy(x) and Hi(x) to be
identical. The principal parts of Gi(x) at zero and unity are readily obtainable from
Egs. (11) and (17) together with the relation Gi(x)=G;(1—x). Since Gi(x)
= —Gy(1—x) and the F's and G’s are linearly dependent, the corresponding principal
parts of G:(x) may be found by the same process. .
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The integral parts of Gi(x) and G:(x) can be approximated by polynomials of
low degree, which makes it possible to reduce the differences Gi(x) —H,(x) and
Gz(x) — H,(x) to uniformly small values throughout the interval by an intelligent
choice of the “subtracting off” functions. Incidentally this process provides a con-
venient check on the accuracy of the tabulated values of the G's. After some manipu-
lation a pair of suitable “subtracting off” functions were found to be

Hy(x) = C2[— 7 + ab — g(0) + C1/C2 — 3(ab — 4)(ab — 6) log, (1 — x)

+1/2* 4+ 1/(1 = 2)* — (ab — 6)/x — (ab — 6)/(1 — w)], (20)
Hy(x) = Dy[(7 — ab — g(0) + D1/D»)(1 — 2x) — }(ab — 4)(ab — 6) log, {x/(1 — x)}
+1/2* = 1/(1 — 2)* — (ab — 6)/x + (ab — 6)/(1 — x)]. (21)

These functions have the added property that
lim {Gi(x) — Hy(2)} = lim {Gy(x) — Hy(x)} = 0.
1 z—0, z—1

z—0, z—

Integrals of the type [xG(x)dx now can be evaluated directly from the identity
— wi(x) = fo.-(x)dx Efx[G;(x) - H.-(x)]dx+fo.»(x)dx, (i=1,2). (22

The second integral on the right-hand side is expressible in terms of elementary func-
tions, while the first one behaves like a polynomial which can be computed easily
with any numerical integration formula having a suitably small remainder depending
on the magnitude of the differences of x[Gi(x) — H:(x)]. Evaluation of the second
integral of Eq. (22) with o =.3 gives, with the constant of integration chosen so that

wi(}) =w:(3) =0,

fo;(x)dx = .060'042.74{.082,589,73:’. + .052,500,0x — 2.103,471

1
+ N + log, x — 1.047,500,0 log. (1 — x) — .052,500,0x2 log, x(1 — x)}, (23)

-2
fog(x)dx = .040,784,50{.080,308,89:_3 — .060,231,6x* + 4.147,500x 4 1.349,471,6

1 1—x
i + log. x + 1.0475,000,0 log, (1— x)+ .052,500,0x2 log, ———} . (29)
— x

7. Deflection and stress coefficients. It is convenient to state the actual deflec-
tion in the form

2R%(1 — ¢2) .
W= ——— [Aw, + Bws + (P/k3)ws + C], (25)

where, from Eqs. (18a) and (19),

1 [2—-3d+l x ]
= 08¢ ’
ws (1 —-3¢)1—0)L1 — 2« g 1—=x

and w; and w, are non-dimensional functions of x defined by Eq. (22). wi, ws, ws
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are deflection coefficients, and are tabulated in Table 2. The constants 4, B, and C
are seen to have the dimensions of stress.

The bending stresses can be stated in a form entirely analogous to that obtained
for the rotating disc problem. With the aid of Eqgs. (4a), (2), and (25), we have

S, = Ap1+ Bps+ (P/ 1) ps,

(26)
S.= Aq + Bq: + (P/Ky)qs,

where
p1= (1 — 2)[2dG,/dx + (1 + 0)Gi],
1= (1 — 2)[o2dG,/dx + (1 + 0)G1];

a similar pair of relations apply to p: and ¢;; when ¢ =.3, p; and g¢; can be computed
directly from the formulas

ps = — 4.547 284

1—=x [.63 + 2.27x — .7x? .7]

x 1 — x) x
( ) @7
1— 221 —214x+ .72* .7
gs = — 4.547 284 —
x (1 — 23 x

Py D2 D3, @1, @2, Qs are the stress coefficients, and are tabulated in Tables 3 and 4.

The tables of coefficients are especially convenient for approximating a plate of
- variable thickness with a system of conical profiles. Calculations in this type of prob-
lem show that it is necessary that the coefficients be accurate to six significant figures
in order to obtain four significant figures in the final results. Consequently the tables
have been calculated accurately to five parts in two million. Their general usefulness
can be extended considerably. with the aid of an auxiliary table of interpolation
coefficients. It was found that such a table based on Bessel’s central difference
formula® for six ordinates gives interpolated values of the coefficients as accurately
as the tabulated ones, except near the ends of the table where the values are seldom
used. In such cases a knowledge of the singularities of the tabulated functions indi-
cates the necessary procedure for applying an interpolation formula. '

ILLUSTRATIVE EXAMYLE

_ Stress distributions in a steel valve of constant weight and various proportions
were estimated by an approximate method based on thin conical disc stress coeffi-
cients tabulated for both the lateral bending and rotating cases. The valve head is
represented by a system of truncated conical shells of variable thickness, whose apex
angles are nearly 180° as shown in Fig. 1. The angle of the seat determines the direc-
tion of the reaction which imposes two independent stress systems on the valve head.
An approximation to these stresses can be made on the assumption that the mem-
brane and bending stresses correspond to those in an equivalent system of conical
discs. This assumption is admissible, since it has been demonstrated? for conical shells
of constant thickness, that the stress distribution has the same character as that in a

8 J. B. Scarborough, Numerical mathematical analysis, The Johns Hopkins Press, Baltimore, Md.,
1930, p. 64.
9 Ref. 1, p. 477.
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circular plate whenever the apex angle of the shell is between 168° and 180° The
loads on the composite disc shown in Fig. 2 are determined by resolving the valve
seat reaction (of which the axial force is a component) into two perpendicular com-
ponents, one of which produces pure compression on a section normal to the middle

Cos 6 P
Cos@

F1G. 1. Half section of valve.

surface at the periphery, and the other of which produces pure bending.* The
peripheral forces per unit length are proportional to the resultant vertical force
acting on the valve, so that the force resolution in Figs. 1 and 2 has been made in
terms of the axial force P, which is considered as a concentrated load, such as would

‘ PSin (0 +a)

Cos 6

PCos gemq
Cos

be imposed on the valve by impact against its seat. It is safe to assume a concentrated
axial load since the impact forces are proportional to the total valve weight, of which
approximately 509, is in the stem.

The next step in the calculation is to represent the valve head by a system of
equivalent conical discs in the usual manner. The tabular solution for the bending
stresses is obtained from the calculation procedure described in Ref. (2), except that

Fi1G. 2. Half section of composite disc.

* Variation in the slopes of corresponding generators of middle surfaces belonging to the conical discs
of the equivalent system is not considered.
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the p’s and ¢’s now refer to lateral bending coefficients and pRZw? is replaced by
P /K. The solution for the membrane stresses is unchanged with the exception that
the coefficients of p; and g¢; are zero, which corresponds to a static stress distribution

1.32———o

112

_621;2..{
24,R
Erd -
2R 17
23-252
Fia. 3.

in a rotating disc. If S, and S, refer to the corresponding membrane stresses respec-
tively, then the appropriate boundary conditions are: at the boundary between valve
stem and head, S;=0S,, 5:=S,; at the periphery S,=0, S, assigned.

201

STRESS FACTOR S/P
° @
: e

n
—

o il N
|
RADIUS IN INCHES

F1c. 4.

N

The dimensions of the valve head and the results of the stress calculations are
shown in Figs. 3 and 4 respectively.
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TasLE 1.*—Fundamental solutions of hypergeometric equation, ¢ =.30.

x Gi(x) =Gi(1 —x) Gl(x)==G{(1=%) | Gix)=—G:(1—x) | G} (x)=G;(1—x)
.00 © — o —

.01 613.258 —121,346.7 416.297 —82,426.1

.02 156.631,5 —15,325.94 106.126,0 —10,410.62

.03 71.137,6 —4,587.63 48.050,0 —-3,116.55

.04 40.900,5 —1,955.005 27.507,5 —1,328.327
.05 26.762,0 —1,010.946 17.900,04 —687.077
.06 19.005,02 —~590.775 12.627,16 —401.683
.07 14.282,02 —375.613 9.415,02 —255.543
.08 11.187,24 —254.002 7.308,76 —172.948,9
.09 9.045,62 —180.034,7 5.849,83 —122.717,7
.10 7.499,77 —132.421,0 4.795,46 -90.387,7
1 6.345,89 —100.354,8 4.007,22 —68.619,0
.12 5.460,74 —77.948,5 3.401,39 —53.412,3
.13 4.766,18 —61.804,5 2.924,89 —42.459,9
.14 4.210,70 —49.867,4 2.542,72 —34.365,6
.15 3.759,18 —40.842,7 2.231,01 —28.250,3
.16 3.386,98 —33.887,3 1.973,046 —23.541,2
17 3.076,44 —28.435,8 1.756,797 —19.854,16
.18 2.814,56 —24.098,7 1.573,446 —16.924,95
.19 2.591,67 —20.602,3 1.416,397 —14.567,50
.20 2.400,38 —17.749,86 1.280,639 —12.648,25
.21 2.235,01 —15.397,53 1.162,300 —11.069,57
.22 2.091,12 —13.438,55 1.058,356 —9.758,98
.23 1.965,196 —11.792,44 .966,410 —8.661,87
.24 1.854,433 —10.397,74 .884,547 —7.736,55
.25 1.756,562 -9.206,96 .811,215 —6.950,83
.26 1.669,738 —8.182,97 .745,149 —6.279,56
.27 1.592,445 ~7.296,48 .685,309 —5.702,90
.28 1.523,429 —6.524,11 .630,829 —5.205,08
.29 1.461,645 —5.847,10 .580,987 —4.773,43
.30 1.406,220 —5.250,21 .535,174 —4.397,71
.31 1.356,416 —4.721,02 - 492,874 —4.069,55
.32 1.311,608 —4.249,27 .453,647 —-3.782,13 .
.33 1.271,267 —3.826,49 417,115 —-3.529,80
.34 1.234,939 —3.445,58 .382,950 —3.307,88
.35 1.202,236 -3.100,60 .350,869 —3.112,48
.36 1.172,824 —2.786,52 .320,623 —2.940,33
.37 1.146,417 —2.499,05 .291,994 —2.788,70
.38 1.122,767 —2.234,53 .264,788 —2.655,29
.39 1.101,661 —1.989,781 .238,834 —2.538,15
.40 1.082,915 —1.762,067 213,976 —2.435,65
.41 1.066,371 —1.548,980 .190,076,6 —2.346,40
.42 1.051,893 —1.348,397 .167,007,9 —2.269,25
.43 1.039,367 —1.158,434 .144,654,6 —2.203,20
.44 1.028,695 —-.977,394 .122,909,6 —2.147 ,46
.45 1.019,795 —.803,742 .101,673,3 —2.101,34
.46 1.012,600 —.636,068 .080,852,4 —2.064,31
.47 1.007,058 —~.473,063 .060,358,2 —2.035,94
.48 1.003,128 —.313,494 .040,105,8 -2.015,90
.49 1.000,780 —.156,186,3 .020,013,2 —2.003,96
.50 1.000,000 0 0 —2.000,00

* The tables were compiled with the aid of the staff of the Calculation Department of Fairbanks
Morse & Co., Beloit, Wis., to whom acknowledgement hereby is made.



215

1044| BENDING OF CONICAL DISCS
TaBLE 2.—Deflection cocfticients for lateral bending of conical discs, o =.30.

f/R w Wy ; w3 ! T/R un W2 w3
.00 0 0 — .50 0 0 10.00402
.01 .341490 .1727156 | —15.84278 .51 —.00505132| .0000506834, 10.39010
.02 .298578 .1436068 |—12.59312 .52 —.01021073| .000205606 | 10.78484
.03 .272917 .1262435 |—10.65009 .53 —.01548680| .000469405 11.18891
.04 .254305 .1136970 —9.24108 .54 —.0208887 | .000847188 11.60306
.05 .239546 .1037962 —8.12392 .55 —.0264263 | .001344576 | 12.02809
.06 .227215 .0955742 ~17.19072 .56 —.0321101 | .001967757 12.46484
.07 .216551 .0885157 —6.38390 .57 —.0379516 | .00272355 12.91425
.08 .207102 .0823131 —5.66908 .58 —.0439632 | .00361945 13.37730
.09 .1985728 .0767682 —5.02404 .59 —.0501582 | .00466373 13.85508
.10 .1907641 .0717460 —4.43361 .60 —.0565514 | .00586555 .| 14.34880
1 .1835327 .0671501 —3.88695 .61 —.0631588 | .00723498 14.85973
12 1767727 .0629098 —3.37604 .62 —.0699978 | .00878323 15.38931
.13 .1704034 .0589712 —2.89476 .63 —.0770879 | .01052271 15.93909
.14 .1643621 .0552928 —2.43835 .64 —.0844501 | .01246720 16.51082
.15 .1585986 .0518418 —2.00300 .65 —.0921083 | .01463208 17.10641
.16 .1530724 .0485919 —1.585657 .66 —.1000884 | .01703454 17.72799
17 .1477501 .0455217 —1.183777 .67 —.1084197 | .01969381 18.37793
.18 .1426040 .0426135 —.795248 .68 —.1171349 | .0226315 19.05890
.19 .1376105 .0398528 —.418284 .69 —.1262706 | .0258720 19.77389
.20 .1327494 .0372275 —.0513587| .70 —.1358681 | .0294430 20.5263
21 .1280035 .0347271 .306849 .1 —.1459743 | .0333756 21.3199
.22 .1233577 .0323431 .657492 .72 —.1566424 | .0377057 22.1591
.23 .1187984 .0300681 1.001586 .73 —.1679333 | .0424741 23.0488
.24 .1143140 .0278957 1.340034 .74 —.1799171 | .0477280 23.9948
.25 .1098938 .0258206 1.673648 .75 —.1926744 | .0535219 25.0038
.26 .1055282 .0238382 2.00316 .76 —.206299 .0599190 26.0833
.27 .1012084 .0219446 2.32924 17 —.220901 .0669937 27.2424
.28 .0969264 .0201566 2.65250 .78 —.236610 .0748334 28.4918
.29 .0926748 .01841116 2.97352 .79 —.253578 .0835418 29.8439
.30 .0884466 .01676613 3.29283 .80 —.271990 .0932430 31.3139
.31 .0842354 .01519954 3.61092 .81 —.292065 .1040868 32.9200
.32 .0800348 .01370985 3.92829 .82 —.314074 .1162557 34.6842
.33 .0758391 .01229585 4.24537 .83 —.338347 .1299744 36.6339
.34 .0716426 .01095665 4.56262 .84 —.365296 .1455227 38.8030
.35 .0674398 .00969164 4.88046 .85 —.395443 .1632539 41.2345
.36 .0632252 .00850050 5.19930 .86 —.429454 .1836207 43.9833
.37 .0589937 .00738318 5.51956 .87 —.468197 .207213 47.1212
.38 .0547400 .00633986 5.84165 .88 —.512828 .234815 50.7436
.39 .0504589 .00537098 6.16596 .89 — .564915 .267491 54.9800
.40 .0461453 .00447722 6.49292 .90 —.626646 .306728 60.0115
.41 .0417938 .00365951 6.82293 .91 —.701169 .354663 66.0987
.42 .0373993 .00291902 7.15642 .92 —.793190 |~.414495 73.6312
.43 .0329561 .00225716 7.49380 .93 —.910079 .491227 83.2197
.44 .0284588 .001675592 7.83553 .94 |—1.064072 .593171 95.8789
.45 .0239016 .001176243| 8.18206 95 [—1.277112 735232 113.4294
.46 .01927865 .000761311 8.53386 .96 |—1.592926 .947112 139.5018
.47 .01458362 .000433277|  8.89143 97 [—2.11315 1.297850 182.5406
.48 .00981010 .000194922|6 9.25528 .98 |[—3.14154 1.993762 267.798
.49 .00495128 .0000493496 9.62595 .99 |—6.19036 |4.06209 521.097
.50 0 0 10.00402 | 1.00 — © )
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TABLE 3.—Stress coefficients for lateral bending of conical discs, ¢ =.30.
r/R p 2 —pe Ps r/R 21 —pe s
.00 — o 0 .50 .650000 .500000 —51.4753
.01 | —412.069 280.244 31209.9 .51 .676528 .513539 —53.6293
.02 |—100.8399 68.8436 7638.76 .52 .704200 .528194 —55.8788
.03 | —43.7956 30.1006 3318.31 .53 733152 .544032 —58.2347
.04 | —24.0284 16.67837 1821.085 .54 .763534 .561125 —60.7094
.05 | —14.96886 10.52962 1134.831 .55 .795506 .579561 —63.3159
.06 | —10.09557 7.22454 765.640 .56 .829243 .599438 —66.0685
.07 —7.18545 5.25310 545.144 .57 .864938 .620867 —68.9831
.08 | —5.31459 3.98776 403.367 .58 .902803 .643975 —72.0770
.09 | —4.04388 3.13023 307.050 .59 .943074 .668906 —75.3697
.10 —3.14316 2.52420 238.760 .60 .986012 .695824 —77.8828
11 —2.48255 2.08145 188.6601 .61 1.031911 .724915 —82.6402
.12 —1.984277 1.749150 150.8584 .62 1.081101 .756391 —86.6694
.13 —1.599538 1.494168 121.6581 .63 1.133955 .790495 —91.0010
.14 —1.296465 1.294864 98.6451 .64 1.190896 .827503 —95.6698
151 —1.053553 1.136640 80.1902 .65 1.252404 .867734 —100.7157
.16 — .855874 1.009365 65.1626 .66 1.319031 .911553 —106.1840
17 —.692812 .905838 52.7577 .67 1.391409 .959381 —112.1271
.18 —.556649 . 820830 42.3909 .68 1.470270 1.011709 —118.6053
.19 —.441674 .750472 33.6293 .69 1.556461 1.069105 —125.6887
.20 —.343586 .691855 26.1469 .70 1.650971 1.132236 —133.4592
.21 —.259098 .642759 19.69457 | .71 1.754958 1.201882 —142.0124
.22 —.1856618 .601468 14.07923 | .72 1.869789 1.278967 —151.4616
.23 —.1212805 .566640 9.14940 | .73 1.997083 1.364585 —161.9406
.24 —.0643692 .537215 4.78487 | .74 2.13878 1.460047 —173.6096
.25 —.01365723] .512346 .889247| .75 2.29719 1.566925 —186.6610
.26 .0318840 .491353 —2.61552 | .76 2.47513 1.687126 —201.327
.27 .0730951 .473684 —5.79325 | .77 2.67604 1.822974 —217.893
.28 .1106690 .458889 —8.69658 | .78 2.90412 1.977330 —236.707
.29 .1451814 .446599 —11.36928 | .79 3.16461 2.15375 —258.203
.30 .1771155 .436510 —13.84808 | .80 3.46408 2.35669 —282.926
.31 .206879 .428369 —16.16404 | .81 3.81084 2.59179 —311.566
.32 .234821 .421968 —18.34365 | .82 4.21558 2.86631 —345.007
.33 .261238 417132 —20.4097 .83 4.69218 3.18967 —384.402
.34 .286390 .413718 | —22.3820 | .84 5.25895 3.57432 —431.270
.35 .310503 .411605 —24.2778 .85 5.94048 4.03696 —487.652
.36 .333776 .410694 | —26.1125 .86 6.77038 4.60040 —556.337
.37 .356387 .410903 | —27.8996 | .87 7.79558 5.29653 —641.223
.38 .378496 .412167 —29.6516 .88 9.08323 6.17096 —747.885
.39 .400248 .414431 —31.3796 .89 10.73220 7.29083 —884.537
.40 421777 .417655 —33.0941 .90 12.89286 8.75831 —1063.672
.41 .443208 .421806 —34.8048 .91 15.80318 10.73501 —1305.066
.42 .464658 .426865 —36.5208 .92 19.85801 13.48915 —1641.541
.43 .486239 .432816 —38.2510 .93 25.7521 17.49263 —2130.86
.44 .508060 .439656 | —40.0040 | .94 | 34.8021 23.6398 —2882.53
.45 .530227 .447386 —41.7881 .95 49.7595 33.7997 —4125.41
.46 .552846 .456017 —43.6117 .96 77.1990 52.4381 —6406.56
.47 .576023 .465566 | —45.4835 .97 | 136.2744 92.5655 —11320.03
48 .599866 .476057 —47.4119 .98 | 304.461 206.807 —25315.3
.49 .624487 .487522 —49.4061 .99 11209.305 821.430 —100647.9
.50 .650000 .500000 | —51.4753 |1.00 © ) —
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TABLE 4.—Stress coefficients for lateral bending of conical discs, ¢ =.30.

r/R ' Gz —q3 r/R ') q: ' ]
.00 © © o .50 .650000 —.1500000{ 50.2020
.01 |428.863 290.968 32477.1 .51 .649206 —.1629858| 50.2128
.02 (109.4320 73.9901 8285.68 .52 .649426 —.1759765| 50.3035
.03 | 49.6545 33.3836 3758.74 .53 .650664 —.1890247| 50.4748
.04 | 28.5222 19.02706 2158.48 .54 .652935 —.202182 50.7282
.05 | 18.64509 12.31570 1410.590 .55 .656258 —.215504 51.0654
.06 | 13.22822 8.63391 1000.466 .56 .660662 —.229044 51.4891
.07 9.93124 6.39200 750.873 .57 .666186 —.242863 52.0026
.08 7.77158 4.92257 587.402 .58 .672875 —.257023 52.6097
.09 6.27752 3.90518 474.331 .59 .680785 —.271589 53.3154
.10 5.19936 3.17022 392.751 .60 .689984 —.286635 54.1253
11 4.39477 2.62101 331.883 .61 .700553 —.302237 55.0462
.12 3.77767 2.19909 285.210 .62 712583 —.318481 56.0859
.13 3.29352 1.867385 248.602 .63 .726185 —.335463 57.2535
.14 2.90636 1.601472 219.336 .64 .741486 —.353287 58.5598
.15 2.59166 1.384697 195.5559 .65 .758634 —.372072 60.0169
.16 2.33225 1.205387 175.9608 .66 .777800 —.391950 61.6393
17 2.11579 1.055157 159.6167 .67 .799185 —.413074 63.4435
.18 1.933233 .927856 145.8386 .68 .823021 —.435615 65.4490
.19 1.777816 .818885 134.1146 .69 .849583 —.459771 67.6783
.20 1.644399 724748 124.0556 .70 .879189 — .485773 70.1581
.21 1.529018 .642750 115.3617 .11 .912216 —.513887 72.9195
.22 | 1.428577 .570780 107.7985 .72 .949106 —.544425 75.9993
.23 1.340629 .507172 101.1808 .73 .990389 —.577156 79.4413
.24 1.263215 .450588 95.3605 .74 1.036693 —.614316 83.2977
.25 1.194757 .399950 90.2181 .75 1.088774 —.654629 87.6312
.26 1.133967 .354377 85.6563 .76 1.147548 —.699322 92.5176
.27 1.079790 .313145 81.5951 77 1.214126 —.749161 98.0492
.28 1.031351 .275652 77.9685 .78 1.289876 —.805081 | 104.3394
.29 .987924 .241396 74.7215 .79 1.376492 —.868241 111.5287
.30 .948897 .209953 71.8079 .80 1.476092 —.940082 | 119.7926
.31 .913757 .1809649 69.1890 .81 1.591352 —1.022432 | 129.3533
.32 .882070 .1541266 66.8319 .82 1.725701 —1.117624 | 140.4952
.33 .853463 .1291751 64.7086 .83 1.883578 —1.228709 | 153.5868
.34 .827622 .1058843 62.7951 .84 2.07083 —1.359573 | 169.1134
.35 .804274 .0840574 61.0712 .85 2.29527 —1.515621 | 187.7236
.36 .783186 .0635226 59.5192 .86 2.56756 —1.704062 | 210.302
.37 764157 .0441290 58.1239 | . .87 2.90251 —1.934972 | 238.080
.38 .747014 .0257434 56.8723 .88 3.32128 —2.22272 272.814
.39 .731606 .00824728f  55.7532 .89 3.85488 —2.58838 317.080
.40 .717805 —.00846535| 54.7569 .90 4.55034 —3.06387 374.786
41 .705497 | —.0244898 53.8749 91 5.48179 —3.69960 452.095
.42 .694587 | —.0399126 53.1001 .92 6.77183 —4.57882 559.197
.43 .684992 | —.0548125 52.4264 .93 8.63538 —5.84753 713.963
44 .676641 —.0692620 51.8486 .94 | 11.47831 —7.78139 950.147
.45 .669475 | —.0833284 51.3624 .95 | 16.14551 —10.95435 | 1338.035
.46 .663446 | —.0970743 50.9640 .96 | 24.6485 —16.73272 | 2045.00
47 .658511 —.1105590 50.6507 .97 | 42.8244 —29.0814 3556.83
.48 .654640 | —.1238390 50.4203 .98 | 94.1889 —63.9738 7831.14
.49 .651808 | —.1369684 50.2710 .99 |368.372 —250.217 30658.4
.50 .650000 | —.1500000 50.2020 | 1.00 o —® ®




