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LATERAL BENDING OF SYMMETRICALLY
LOADED CONICAL DISCS*

BY

K. E. BISSHOPP
Fairbanks, Morse & Company, Beloit, Wisconsin**

1. Introduction. The general theory of lateral bending for thin circular plates of
variable thickness is given in Timoshenko's book,1 "Theory of plates and shells,"
where also may be found numerous references to the literature of the subject. Of
particular interest is a reference to Foppl who indicated the analogy existing between
the rotating disc problem and that of lateral bending in a circular plate of variable
thickness. Comparison of the solution for the rotating conical disc problem with the
corresponding one for lateral bending shows that the basic differential equations in-
volved, and the expressions for the stresses, are analogous. Therefore, previously de-
scribed methods2 for obtaining solutions of the former problem in terms of hyper-
geometric functions are applicable to the latter problem. It will appear later that the
special type of hypergeometric differential equation associated with the lateral bend-
ing problem has solutions which give the stress coefficients with less labor than in the
case of the rotating conical disc.

The stress coefficients have been arranged conveniently for numerical calculation
of conical discs, which are component parts of a wide variety of engineering struc-
tures. The head of a large poppet valve provides a particular example where the
principal stress member can be approximated by a system of incomplete conical
discs. In order to illustrate an application of the theory, stress coefficients for conical
discs subject to lateral bending as well as for rotating conical discs will be used to
estimate stress distributions in a steel valve head of constant weight and various
proportions. Since the coefficients are obtained from solutions of differential equa-
tions for thin discs, the approximate method breaks down in the neighborhood of the
valve stem. These limitations have little effect near the periphery, which makes it
possible to calculate valve proportions c6rresponding to approximately uniform stress
distribution throughout the head. The description of the illustrative example at the
end of the paper explains the method of calculation in detail.

2. Derivation of differential equation. Let Mr and M, denote radial and tangential
bending moments per unit length acting on an element of a circular plate at distance
r from the center; then if Q is the corresponding circumferential shearing force per
unit length, the equation of equilibrium is

Mr + rdMr/dr — Mt = — Qr. (1)

If w denotes downward deflection of the middle surface, then

* Received Jan. 29, 1944.
** Now at Armour Research Foundation, Chicago, 111.
1 Timoshenko, Theory of plates and shells, McGraw-Hill, 1st Edition 1940, Art. 54, p. 282.
2 K. E. Bisshopp, Stress coefficients for rotating discs of conical profile, Journal of Applied Mechanics,
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/ d2w <t dw\ /dtp(d2w <t dw\ /d<p a \— + ) = £>( — + — A
dr2 r dr ) \dr r )

(1 dw d2w\ / if> dtp\
 + a ) = D[ h <r — ),
r dr drV \r dr)

(2)

where a is Poisson's ratio, <p= —dw/dr and D =Eh3/\2{\ — c2), E being Young's
modulus and h the thickness of the plate; D is called the flexural rigidity.

In the case of a conical profile, h is a linear function of r, so that substitution
from Eqs. (2) in Eq. (1) gives

d /dtp (p\ dD (dtp <p\D — ( — + — ) + ( — + — ) = - Q.
dr \dr r ) dr \dr r )

(3)

In order to reduce this equation to non-dimensional form, we introduce the radius R
to the knife edge of the disc and the thickness h0 at the center. If rJR=x, then
h = h0(l—x), and Eq. (3) becomes

dx2 \x 1 — x) dx \«2 *(1 — x)/

\2QR\\ - a2)——   • (4)
*(1 - x)J Eh\{ 1 - x)%

For any particular type of symmetrical loading the shearing force Q is a function
of x alone. The maximum radial and tangential bending stresses ST and St are ob-
tained from the general solution of Eq. (4) with the aid of Eqs. (2) and the relations

ST = 6 Mr/h2, 5, = 6M,/h\ (4a)

The problem of a conical disc supporting a concentrated vertical load P at the
center has some interesting practical applications. In this case Q = P/2irr = P/2irRx,
and Eq. (4) becomes

d2tp d<p /I — x \
- x) — + (1 - 4z) — -  f- 3(7J v = -

6PR(1 - ff2)

t£A5(1 - *)2

It can be verified by substitution that a particular integral of Eq. (5) is

(5)

2PR(1 + a) / 2 - 3<r 1 1 \
<p3(x) = ( + —+ J- (6)

rrEhKl - 3<r) \(1 - x)2 x 1 - x)

The auxiliary equation, the solutions of which are independent of the type of loading,
is obtained by setting the right hand side of Eq. (5) equal to zero. After making the
substitution <p = xF, we obtain

d2F dF
x(l - x) + 3(1 - 2x) 3(1 + a)F = 0, (7)

dx2 dx

which is recognized to be of hypergeometric type.
3. Complementary functions. Equation (7) is of the form

d2F r , dF
x(l — x) b [c — (a + b + 1) x] abF = 0,

dx2 dx
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where c = 3, a + & = 5, and ab = 3(\+cr). The first solution can be represented by a
power series; the integral exponent difference31 — c= —2 shows that the second solu-
tion contains a logarithm.* In the notation of the hypergeometric function, the first
solution is

ab a(a + 1)b(b + 1)
^i(z) = F(a, b, c, x) = 1 + — x + ———— x2 + ■ • ■ , (8)

Tc 1-2-c(c + 1)

which converges absolutely and uniformly when | sc| <1. The asymptotic behavior of
the hypergeometric function in the neigborhood of its poles is given by4

F(a, b, c, x) ~ /I—~ (9)
x->i a

whenever c—a — b is an integer less than zero, r(z) being the well known gamma
function. Thus Fi(x) has a second order singularity at x = 1 such that,

r(3)r(2) 2(1 - x)~2 sin air
Fi(x) ^ (1 - *)-2 =     , (10)

*V r(o)r(i) x(o - l)(a - 2)(o - 3)(a - 4)

which may be used to approximate the function for values of x near unity. The
presence of singularities of lower order in the remainder term for Fi(x) makes this
method unsuitable for accurate numerical work. Better approximations for similar
functions with second and third order singularities are given in Ref. (2).

The logarithmic solution6 of Eq. (7) isf

(ab — 4 )(ab — 6) 1 ab — 6
F2{x) =   Fx{x) log. x + — g(x), (11)

2 x2 x

where

and

- (n+a-3)---(a-2)(n+b-3)---(b-2)
g(x) = E    — x"~^n, (12)

n\{n — 2)1

$n = tin — 3 + a) + i(n — 3 + b) — ̂ («) — ̂ (« — 2)
1 11 1

+ • • • + - + -   + ••.• +
a — 2 a -f- n — 3 b — 2 b -(- n — 3

1 11 1-1    1   (13)
2 n 2 n-2

The principal part of expansion (11) shows that F%(x) has a second order singularity
at the origin. The nature of the singularity at x = 1 can be recognized by observing

3 Whittaker and Watson, A course of modern analysis, Cambridge, England, 4th Edition, 1927
p. 198.

* When <7 = 1/3 both solutions can be expressed in terms of rational algebraic functions.
4 Titchmarsh, Theory of functions, Oxford, England, 1932, p. 224.
5 Forsyth, Theory of differential equations, Cambridge, England, 1902, vol. 4, part 3, p. 147.
f The numerical value of c is used since it is independent of Poisson's ratio <r.
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the limiting form of the nth term of g(x) which is proportional to that of Fi(x) pro-
vided lim„_M remains finite. That this is the case can be shown with the aid of the
logarithmic derivative' of the Gamma function, which gives

lim <*>„ = 2 ( 1 1 ^ — 2y — 2V(a) — ir cot at, (14)
n-»« \a — 2 a — 1 a /

where ^(a) = r'(a + l)/r(a + l) and y is Euler's constant. Thus Ft(x) has a second
order singularity at x = 1 of magnitude

sin ar / ,
Fi(x) ~ — lim <i>„  / (1 — x)"1. (15)

X—»1 n—»eo 7T /

The slow convergence of the power series near the singularities of F\(x) and Fi(x)
makes numerical evaluation of the stress coefficients for all values of x between zero
and unity exceedingly difficult, in spite of available asymptotic approximations. One
scheme for removing this difficulty would be to construct from the transformed differ-
ential equation (7) two new solutions of argument 1 — x and combine them linearly
with Fi(x) and F»{x), as described in Ref. (2). This differential equation is invariant
under transformation by 1 — x, which brings about added convenience of calculation;
however, considerable further reduction in computation can be accomplished by ex-
pressing Fi(x) and Fz(x) in terms of symmetrical hypergeometric functions.

4. Solutions in terms of even and odd functions. Whenever 2c = a+6+1, which
condition is satisfied by Eq. (7), the transformation (1— 2z)1 = t reduces the standard
form of the hypergeometric equation to

d2F r 1 / a b \ IdF ab
t(l-t) + I 1 hi)# F = 0- (16)

df1 L 2 \ 2 2 / J dt 4
The solutions of this equation as functions of x are7

F{\a,hb,h (1 - 2xY] =£,(*), (1 - 2x)F{i(a + 1), i(& + 1), f, (1 — 2*)'} = Gt(x).
This shows that G\(x) = Gi(l —x) and Gt(x) = — Gi(l —x). Since only functions of * are
involved,

G,(s) = CJM + CMx),
G2(x) = DJf.ix) + D2F2{x),

where C\, Cj, D\, D2 are constants; Gi(x) and G2(x) are respectively even and odd
relative to the point x = %. The series for Gi(x) and Gi(x) are very convenient for
computation when .25^*^.50, while those for F\(x) and Ft(pc) are equally so when
0 ^ .25. Since the G's are symmetrical it is necessary to compute only one half as
many fundamental values for constructing tables of stress coefficients as would be
required with the F's. From this point on therefore, the F's are subordinated to the
role of "helping functions," while the G's form the basis of all subsequent calculations.

Returning to Eq. (17), we employ the familiar method of comparison of singulari-
ties for evaluation of the linear factors. It is apparent from the character of the F's
that the G's have second order singularities at zero and unity whose values may be
deduced from Eq. (9). After some reduction, we obtain

• Ref. 3, p. 246.
7 Ref. 3, p. 297, Example 7.
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Vt r(o)r(i) r sina*"]
C1 =   1 + lim <£n  ,32r(§a)r(js) L «-« x J
C2 = Vx/[l6r(^a)r(ii)],

D1 = -

- , (18)
7r T(a)r(6) r sina7r~]

,  ;—; r 1 — hm $11  .
64r {5(0 + 1)} r {\(b + 1)} L »-»«> it J

d2 = v^/[32r{i(ff + i)}r{i(i + 1)}].

The functions Gi(x), Gv(x), and their derivatives are tabulated in Table 1.
Since the F's and G's are linearly dependent, xGi(x) and xGz(x) are fundamental

solutions of Eq. (5), from which, by use of Eqs. (2) and (4a), the stress coefficients
follow immediately.

5. Determination of the deflection functions. The deflection w(x) can be expressed
in the form

w(x) = i?[wi(a:) + w^{x) + w3(«)], (18a)

where Wi(x) and W2(x) arise from the complementary functions respectively, and
w3(x) arises from the particular integral. The calculation of Wz(x) presents no diffi-
culty, since only elementary functions with known integrals are involved. Direct in
tegration of Eq. (6) gives

r 2PR(1 + <0 T2 - 3<r x "I*.<») - - j «(»w» - ,£„(1_ Jr—+logT^J- (19)

The construction of the deflection functions W\(x) and Wz(x) is considerably more diffi-
cult, since it is necessary to evaluate integrals of the type JxGi(x)dx (i= 1, 2), which
involves additional infinite series. For purposes of computation, a convenient proce-
dure, that also has the advantage of being easy to check, is to use a combination of
analytical and numerical methods. A prerequisite for this calculation is a fairly ex-
tensive and accurate tabulation of the G's.

A straightforward step by step numerical integration process is seen to fail near
the poles of the G's, due to the presence of ordinary singularities in the integrands.
The procedure for constructing the functions wi(x) and w2(x) in tabular form con-
sists of removing these singularities analytically and integrating the resulting func-
tions numerically.

6. Removal of singularities from the integrands of fxGi(x)dx and JxGi{x)dx. Let
us consider a "substracting off" function H\(x) which has the property that
Gi(x) — Hi(x) is bounded uniformly, i.e., without finite jumps, throughout the in-
terval of existence of G\(x). It is necessary that II\(x) be continuous except for poles
which are of the same order as, and coincide with, those of Gi(x). This specification
is not sufficient however, since at every point of the interval the difference
Gi(x) —Hi(x) is finite, which requires the principal parts of Gi(x) and Hi(x) to be
identical. The principal parts of Gi(x) at zero and unity are readily obtainable from
Eqs. (11) and (17) together with the relation Gi(x) =Gi(l —x). Since G*{x)
= —Gi( 1 — x) and the F's and G's are linearly dependent, the corresponding principal
parts of Gi(x) may be found by the same process.
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The integral parts of Gi(x) and G2(*) can be approximated by polynomials of
low degree, which makes it possible to reduce the differences Gi(x)—H\(x) and
Gi{x)—lh{x) to uniformly small values throughout the interval by an intelligent
choice of the "subtracting off" functions. Incidentally this process provides a con-
venient check on the accuracy of the tabulated values of the G's. After some manipu-
lation a pair of suitable "subtracting off" functions were found to be

Hi(x) = Ct[- 7 + ab — g(0) + C,/C2 - \{ab - 4)(ob - 6) log, x(l - x)
+ l/*2 + 1/(1 - *)2 - (ab - 6)/x - (ab - 6)/(l - *)], (20)

H,(x) = D2[(7 - ab - g(0) + Z?,/Z?2)( 1 - 2x) - $(ab - 4)(ab - 6) log, {x/(l - x)}
+ l/*2 - 1/(1 - *)2 - (ab - 6)/* + (ab - 6)/(l - as)]. (21)

These functions have the added property that

lim {Gi(*) — Hi(x)} = lim {G2(*) — H2(x)} = 0.
x—»0, x—*l x—*0, x—*l

Integrals of the type JxG(x)dx now can be evaluated directly from the identity

— Wi(x) = J* xGi(x)dx = J* *[G<(*) — Hi(x)]dx + J* xHi(x)dx, (i = 1, 2). (22)

The second integral on the right-hand side is expressible in terms of elementary func-
tions, while the first one behaves like a polynomial which can be computed easily
with any numerical integration formula having a suitably small remainder depending
on the magnitude of the differences of *[G,(*) — •(*)]. Evaluation of the second
integral of Eq. (22) with <r = .3 gives, with the constant of integration chosen so that
wi(i)=w2(i)=0,

J xHx(x)dx = .060,042,741.082,589,7** + .052,500,0* - 2.103,471

+ —— + log, * - 1.047,500,0 log, (1 - *) - .052,500,0*2 log, x(l - *)1, (23)
1 - x )

J xH2(x)dx = .040,784,50080,308,8*3 - .060,231,6*2 + 4.147,500* + 1.349,471,6

1 1 - *)
+ log, * + 1.0475,000,0 log, (1- *)+ .052,500,0*2 log. } . (24)

* ;1 - *

7. Deflection and stress coefficients. It is convenient to state the actual deflec-
tion in the form

2tf2(l - <r2) f
w = [Awx + Bwi+ (P/h\)w* + C], (25)

Eh0

where, from Eqs. (18a) and (19),

1 T2 - 3<r * "1
*"" x(i-3,)(i-,)Lt^7+los'

and W\ and w2 are non-dimensional functions of * defined by Eq. (22). W\, wt, w3
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are deflection coefficients, and are tabulated in Table 2. The constants A, B, and C
are seen to have the dimensions of stress.

The bending stresses can be stated in a form entirely analogous to that obtained
for the rotating disc problem. With the aid of Eqs. (4a), (2), and (25), we have

Sr - A pi + Bpi + (P/hl)p3,
(26)

St = Aqx + Bq2 + (P/h20)q3,
where

p! = (1 - x)[xdGi/dx + (1 + <r)Gi],
gi = (1 — x)[<rxdGi/dx + (1 + <r)Gi];

a similar pair of relations apply to pi and q2\ when <r = .3, p3 and q3 can be computed
directly from the formulas

1 - s T.63 + 2.27* - .7xi .7 "1
p3 = - 4.547 284   ,x I (\-xY xj

(27)1 -s T2.1 - 2.14* + .1 x* .7 "
q3 = - 4.547 284

- s ["2.1 - 2.14* + ,7xi i ,7"|
* L (1 - xY + *J'

pi, Pi, p3, 3i, qi, q3 are the stress coefficients, and are tabulated in Tables 3 and 4.
The tables of coefficients are especially convenient for approximating a plate of

variable thickness with a system of conical profiles. Calculations in this type of prob-
lem show that it is necessary that the coefficients be accurate to six significant figures
in order to obtain four significant figures in the final results. Consequently the tables
have been calculated accurately to five parts in two million. Their general usefulness
can be extended considerably with the aid of an auxiliary table of interpolation
coefficients. It was found that such a table based on Bessel's central difference
formula8 for six ordinates gives interpolated values of the coefficients as accurately
as the tabulated ones, except near the ends of the table where the values are seldom
used. In such cases a knowledge of the singularities of the tabulated functions indi-
cates the necessary procedure for applying an interpolation formula.

Illustrative Example
Stress distributions in a steel valve of constant weight and various proportions

were estimated by an approximate method based on thin conical disc stress coeffi-
cients tabulated for both the lateral bending and rotating cases. The valve head is
represented by a system of truncated conical shells of variable thickness, whose apex
angles are nearly 180° as shown in Fig. 1. The angle of the seat determines the direc-
tion of the reaction which imposes two independent stress systems on the valve head.
An approximation to these stresses can be made on the assumption that the mem-
brane and bending stresses correspond to those in an equivalent system of conical
discs. This assumption is admissible, since it has been demonstrated9 for conical shells
of constant thickness, that the stress distribution has the same character as that in a

8 J. B. Scarborough, Numerical mathematical analysis, The Johns Hopkins Press, Baltimore, Md.,
1930, p. 64.

> Ref. 1, p. 477.
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circular plate whenever the apex angle of the shell is between 168° and 180°. The
loads on the composite disc shown in Fig. 2 are determined by resolving the valve
seat reaction (of which the axial force is a component) into two perpendicular com-
ponents, one of which produces pure compression on a section normal to the middle

1 ^Horizontal

PSinffl+oC)
PCos'(9+oC)\ Cos 0

Cos 0 p

Fig. 1. Half section of valve.

surface at the periphery, and the other of which produces pure bending.* The
peripheral forces per unit length are proportional to the resultant vertical force
acting on the valve, so that the force resolution in Figs. 1 and 2 has been made in
terms of the axial force P, which is considered as a concentrated load, such as would

PSn(e+oc)
cose

pcos (e+oc)
cose

Fig. 2. Half section of composite disc.

be imposed on the valve by impact against its seat. It is safe to assume a concentrated
axial load since the impact forces are proportional to the total valve weight, of which
approximately 50% is in the stem.

The next step in the calculation is to represent the valve head by a system of
equivalent conical discs in the usual manner. The tabular solution for the bending
stresses is obtained from the calculation procedure described in Ref. (2), except that

* Variation in the slopes of corresponding generators of middle surfaces belonging to the conical discs
of the equivalent system is not considered.
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the p's and q's now refer to lateral bending coefficients and is replaced by
P/hL. The solution for the membrane stresses is unchanged with the exception that
the coefficients of p3 and q3 are zero, which corresponds to a static stress distribution

Fig. 3.

in a rotating disc. If Sr and St refer to the corresponding membrane stresses respec-
tively, then the appropriate boundary conditions are: at the boundary between valve
stem and head, St = <TSr, St = Sr', at the periphery Sr = 0, Sr assigned.

o i z
RADIUS IN INCHES

Fig. 4.

The dimensions of the valve head and the results of the stress calculations are
shown in Figs. 3 and 4 respectively.
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Table 1.*—Fundamental solutions of hypergeometric equation, <r = .30.

G,(x) =Gi(l —x) C\ (.*) = —G{ (1 —x) Gt(x) = -G,(l-x) G{ (x) =Gl (1 -x)
.00
.01
.02
.03
.04

.05

.06

.07

.08

.09

613.258
156.631,5
71.137
40.900

26.762
19.005
14.282
11.187
9.045

6
5

0
02
02
24
62

-121,346.7
-15,325.94
-4,587.63
-1,955.005

-1,010.946
-590.775
-375.613
-254.002
-180.034,7

416.297
106.126,0
48.050,0
27.507,5

17.900,04
12.627,16
9.415,02
7.308,76
5.849,83

-82,426.1
-10,410.62
-3,116.55
-1,328.327

-687.077
-401.683
-255.543
-172.948,9
-122.717,7

.10

.11

.12

.13

.14

.15

.16

.17

.18

.19

7.499
6.345
5.460
4.766
4.210

3.759
3.386
3.076
2.814
2.591

77
89
74
18
70

18
98
44
56
67

-132.421,0
-100.354,8
-77.948,5
-61.804,5
-49.867,4

-40.842,7
-33.887,3
-28.435,8
-24.098,7
-20.602,3

4.795,46
4.007,22
3.401,39
2.924,89
2.542,72

2.231,01
1.973,046
1.756,797
1.573,446
1.416,397

-90.387,7
-68.619,0
-53.412,3
-42.459,9
-34.365,6

-28.250,3
-23.541,2
-19.854,16
-16.924,95
-14.567,50

.20

.21

.22

.23

.24

.25

.26

.27

.28

.29

2.400
2.235
2.091
1.965
1.854

1.756
1.669
1.592
1.523
1.461

38
01
12
196
433

562
738
445
429
645

-17.749,86
-15.397,53
-13.438,55
-11.792,44
-10.397,74

-9.206,96
-8.182,97
-7.296,48
-6.524,11
-5.847,10

1.280,639
1.162,300
1.058,356

.966,410

.884,547

.811,215

.745,149

.685,309

.630,829

.580,987

-12.648,25
-11.069,57
-9.758,98
-8.661,87
-7.736,55

-6.950,83
-6.279,56
-5.702,90
-5.205,08
-4.773,43

.30

.31

.32

.33

.34

.35

.36

.37

.38

.39

.40

.41

.42

.43

.44

.45

.46

.47

.48

.49

.50

1.406
1.356
1.311
1.271
1.234

1.202
1.172
1.146
1.122
1.101

220
416
608
267
939

236
824
417
767
661

1.082
1.066
1.051
1.039
1.028

1.019
1.012
1.007
1.003
1.000

915
371
893
367
695

795
600
058
128
780

1.000,000

-5.250,21
-4.721,02
-4.249,27
-3.826,49
-3.445,58

-3.100,60
-2.786,52
-2.499,05
-2.234,53
-1.989,781

.535,174

.492,874

.453,647

.417,115

.382,950

.350,869

.320,623

.291,994

.264,788

.238,834
-1.762,067
-1.548,980
-1.348,397
-1.158,434
- .977,394

-.803,742
-.636,068
-.473,063
-.313,494
-.156,186,3

.213,976

.190,076,6

.167,007,9

.144,654,6

.122,909,6

.101,673,3

.080,852,4

.060,358,2

.040,105,8

.020,013,2

0 0

-4.397,71
-4.069,55
-3.782,13
-3.529,80
-3.307,88

-3.112,48
-2.940,33
-2.788,70
-2.655,29
-2.538,15

-2.435,65
-2.346,40
-2.269,25
-2.203,20
-2.147,46

-2.101,34
-2.064,31
-2.035,94
-2.015,90
-2.003,96

-2.000,00

* The tables were compiled with the aid of the staff of the Calculation Department of Fairbanks
Vlorse & Co., Beloit, Wis., to whom acknowledgement hereby is made.
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Table 2.-—Deflection coefficients for lateral bending of conical discs, a — .30.

r/R w\

.00

.01 .341490

.02 .298578

.03 .272917

.04 .254305

.05 .239546

.06 .227215

.07 .216551

.08 .207102

.09 .1985728

ic3 | r/R

.1727156

. 1436068

.1262435

.1136970

.1037962

.0955742

.0885157

.0823131

.0767682

-15.84278
-12.59312
-10.65009
-9.24108

-8.12392
-7.19072
-6.38390
-5.66908
-5.02404

.50

.51

.52

.53

.54

.55

.56

.57

.58

.59

W i Wi w 3

0
.00505132
.01021073
.01548680
.0208887

.0264263

.0321101

.0379516

.0439632

.0501582

0
.0000506834
.000205606
.000469405
.000847188

.001344576

.001967757

.00272355

.00361945

.00466373

10.00402
10.39010
10.78484
11.18891
11.60306

12.02809
12.46484
12.91425
13.37730
13.85508

.10 .1907641

.11 .1835327

.12 .1767727

.13 .1704034

.14 .1643621

.15 .1585986

.16 .1530724

.17 .1477501

.18 .1426040

.19 .1376105

.0717460

.0671501

.0629098

.0589712

.0552928

.0518418

.0485919

.0455217

.0426135

.0398528

-4.43361
-3.88695
-3.37604
-2.89476
-2.43835

-2.00300
-1.585657
-1.183777
-.795248
-.418284

.60

.61

.62

.63

.64

.65

.66

.67

.68

.69

.0565514

.0631588

.0699978

.0770879

.0844501

.0921083

.1000884

.1084197

.1171349

.1262706

.00586555

.00723498

.00878323

.01052271

.01246720

.01463208

.01703454

.01969381

.0226315

.0258720

14.34880
14.85973
15.38931
15.93909
16.51082

17.10641
17.72799
18.37793
19.05890
19.77389

.20 .1327494

.21 .1280035

.22 .1233577

.23 .1187984

.24 .1143140

.25 .1098938

.26 .1055282

.27 .1012084

.28 .0969264

.29 .0926748

.0372275

.0347271

.0323431

.0300681

.0278957

.0258206

.0238382

.0219446

.0201366

.01841116

-.0513587
.306849
.657492

1.001586
1.340034

1.673648
2.00316
2.32924
2.65250

.70

.71

.72

.73

.74

.75

.76

.77

.78
2.97352 , .79

.1358681

.1459743

.1566424

.1679333

.1799171

.1926744

.206299

.220901

.236610

.253578

.0294430

.0333756

.0377057

.0424741

.0477280

.0535219

.0599190

.0669937

.0748334

.0835418

20.5263
21.3199
22.1591
23.0488
23.9948

25.0038
26.0833
27.2424
28.4918
29.8439

.30 .0884466

.31 .0842354

.32 .0800348

.33 .0758391

.34 .0716426

.35 .0674398

.36 .0632252

.37 .0589937

.38 .0547400

.39 .0504589

.01676613

.01519954

.01370985

.01229585

.01095665

.00969164

.00850050

.00738318

.00633986

.00537098

3.29283
3.61092
3.92829
4.24537
4.56262

4.88046
5.19930
5.51956
5.84165
6.16596

.40 .0461453

.41 .0417938

.42 .0373993

.43 .0329561

.44 .0284588

.45 .0239016

.46 .01927865

.47 .01458362

.48 .00981010

.49 .00495128

.00447722

.00365951

.00291902

.00225716

.001675592

.001176243

.000761311

.000433277

.000194922

.000049349

.50 0 0

6.49292
6.82293
7.15642
7.49380
7.83553

8.18206
8.53386
8.89143

6 9.25528
6 9.62595

10.00402

.80

.81

.82

.83

.84

.85

.86

.87

.88

.89

.90

.91

.92

.93

.94

.95

.96

.97

.98

.99

1.00

- .271990
- .292065
-.314074
- .338347
-.365296

- .395443
- .429454
- .468197
-.512828
- .564915

-.626646
-.701169
-.793190
-.910079

-1.064072

-1.277112
-1.592926
-2.11315
-3.14154
-6.19036

.0932430

.1040868

.1162557

.1299744

.1455227

.1632539

.1836207

.207213

.234815

.267491

.306728

.354663" 414495

.491227

.593171

.735232

.947112
1.297850
1.993762
4.06209

31.3139
32.9200
34.6842
36.6339
38.8030

41.2345
43.9833
47.1212
50.7436
54.9800

60.0115
66.0987
73.6312
83.2197
95.8789

113.4294
139.5018
182.5406
267.798
521.097
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Table 3.—Stress coefficients for lateral bending of conical discs, a = .30.

r/R pi -pi
p3 r/R Pi -pi

.00 — oo

.01 -412.069

.02 -100.8399

.03 -43.7956

.04 -24.0284

.05 -14.96886

.06 -10.09557

.07 -7.18545

.08 -5.31459

.09 -4.04388

280.244
68.8436
30.1006
16.67837

10.52962
7.22454
5.25310
3.98776
3.13023

31209.9
7638.76
3318.31
1821.085

1134.831
765.640
545.144
403.367
307.050

.50

.51

.52

.53

.54

.55

.56

.57

.58

.59

.650000

.676528

.704200

.733152

.763534

.795506

.829243

.864938

.902803

.943074

.500000

.513539

.528194

.544032

.561125

.579561

.599438

.620867

.643975

.668906

-51.4753
-53.6293
-55.8788
-58.2347
-60.7094

-63.3159
-66.0685
-68.9831
-72.0770
-75.3697

.10 -3.14316

.11 -2.48255

.12 -1.984277

.13 -1.599538

.14 -1.296465

.15 -1.053553

.16 -.855874

.17 -.692812

.18 -.556649

.19 -.441674

2.52420
2.08145
1.749150
1.494168
1.294864

1.136640
1.009365

.905838

.820830

.750472

238.760
188.6601
150.8584
121.6581
98.6451

80.1902
65.1626
52.7577
42.3909
33.6293

.60

.61

.62

.63

.64

.65

.66

.67

.68

.69

.986012
1.031911
1.081101
1.133955
1.190896

1.252404
1.319031
1.391409
1.470270
1.556461

.695824

.724915

.756391

.790495

.827503

.867734

.911553

.959381
1.011709
1.069105

-77.8828
-82.6402
-86.6694
-91.0010
-95.6698

-100.7157
-106.1840
-112.1271
-118.6053
-125.6887

.20 -.343586

.21 -.259098

.22 -.1856618

.23 -.1212805

.24 -.0643692

.25 -.01365723

.26 .0318840

.27 .0730951

.28 .1106690

.29 .1451814

.691855

.642759

.601468

.566640

.537215

.512346

.491353

.473684

.458889

.446599

26.1469
19.69457
14.07923
9.14940
4.78487

.889247-2.61552
-5.79325
-8.69658

-11.36928

.70

.71

.72

.73

.74

.75

.76

.77

.78

.79

1.650971
1.754958
1.869789
1.997083
2.13878

2.29719
2.47513
2.67604
2.90412
3.16461

1.132236
1.201882
1.278967
1.364585
1.460047

1.566925
1.687126
1.822974
1.977330
2.15375

-133.4592
-142.0124
-151.4616
-161.9406
-173.6096

-186.6610
-201.327
-217.893
-236.707
-258.203

.30 .1771155

.31 .206879

.32 .234821

.33 .261238

.34 .286390

.35 .310503

.36 .333776

.37 .356387

.38 .378496

.39 .400248

.436510

.428369

.421968

.417132

.413718

.411605

.410694

.410903

.412167

.414431

-13.84808
-16.16404
-18.34365
-20.4097
-22.3820

-24.2778
-26.1125
-27.8996
-29.6516
-31.3796

.80

.81

.82

.83

.84

.85

.86

.87

.88

.89

3.46408
3.81084
4.21558
4.69218
5.25895

5.94048
6.77038
7.79558
9.08323

10.73220

2.35669
2.59179
2.86631
3.18967
3.57432

4.03696
4.60040
5.29653
6.17096
7.29083

-282.926
-311.566
-345.007
-384.402
-431.270

-487.652
-556.337
-641.223
-747.885
-884.537

.40 .421777

.41 .443208

.42 .464658

.43 .486239

.44 .508060

.45 .530227

.46 .552846

.47 .576023

.48 .599866

.49 .624487

.417655

.421806

.426865

.432816

.439656

.447386

.456017

.465566

.476057

.487522

-33.0941
-34.8048
-36.5208
-38.2510
-40.0040

-41.7881
-43.6117
-45.4835
-47.4119
-49.4061

.90

.91

.92

.93

.94

.95

.96

.97

.98

.99

12.89286
15.80318
19.85801
25.7521
34.8021

49.7595
77.1990

136.2744
304.461

1209.305

8.75831
10.73501
13.48915
17.49263
23.6398

33.7997
52.4381
92.5655

206.807
821.430

-1063.672
-1305.066
-1641.541
-2130.86
-2882.53

-4125.41
-6406.56

-11320.03
-25315.3

-100647.9

.50 .650000 .500000 -51.4753 1.00
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Table 4.—Stress coefficients for lateral bending of conical discs, a = .30.

r/R it -23 r/R 2i 2s I ~2a

.00

.01

.02

.03

.04

.05

.06

.07

.08

.09

428.863
109.4320
49.6545
28.5222

18.64509
13.22822
9.93124
7.77158
6.27752

290.968
73.9901
33.3836
19.02706

12.31570
8.63391
6.39200
4.92257
3.90518

32477.1
8285.68
3758.74
2158.48

1410.590
1000.466
750.873
587.402
474.331

.50

.51

.52

.53

.54

.55

.56

.57

.58

.59

.650000

.649206

.649426

.650664

.652935

.656258

.660662

.666186

.672875

.680785

-.1500000
-.1629858
- .1759765
-.1890247
-.202182

-.215504
-.229044
-.242863
-.257023
-.271589

50.2020
50.2128
50.3035
50.4748
50.7282

51.0654
51.4891
52.0026
52.6097
53.3154

.10

.11

.12

.13

.14

.15

.16

.17

.18

.19

5.19936
4.39477
3.77767
3.29352
2.90636

2.59166
2.33225
2.11579
1.933233
1.777816

3.17022
2.62101
2.19909
1.867385
1.601472

1.384697
1.205387
1.055157

.927856

.818885

392.751
331.883
285.210
248.602
219.336

195.5559
175.9608
159.6167
145.8386
134.1146

.60

.61

.62

.63

.64

.65

.66

.67

.68

.69

.689984

.700553

.712583

.726185

.741486

.758634

.777800

.799185

.823021

.849583

- .286635
-.302237
- .318481
-.335463
-.353287

-.372072
-.391950
-.413074
-.435615
-.459771

54.1253
55.0462
56.0859
57.2535
58.5598

60.0169
61.6393
63.4435
65.4490
67.6783

.20

.21

.22

.23

.24

.25

.26

.27

.28

.29

1.644399
1.529018
1.428577
1.340629
1.263215

1.194757
1.133967
1.079790
1.031351

.987924

.724748

.642750

.570780

.507172

.450588

.399950

.354377

.313145

.275652

.241396

124.0556
115.3617
107.7985
101.1808
95.3605

90.2181
85.6563
81.5951
77.9685
74.7215

.70

.71

.72

.73

.74

.75

.76

.77

.78

.79

.879189

.912216

.949106

.990389
1.036693

1.088774
1.147548
1.214126
1.289876
1.376492

-.485773
-.513887
-.544425
-.577756
-.614316

-.654629
-.699322
-.749161
-.805081
-.868241

70.1581
72.9195
75.9993
79.4413
83.2977

87.6312
92.5176
98.0492

104.3394
111.5287

.30

.31

.32

.33

.34

.35

.36

.37

.38

.39

.948897

.913757

.882070

.853463

.827622

.804274

.783186

.764157

.747014

.731606

.209953

.1809649

.1541266

.1291751

. 1058843

.0840574

.0635226

.0441290

.0257434

.00824728

71.8079
69.1890
66.8319
64.7086
62.7951

61.0712
59.5192
58.1239
56.8723
55.7532

.80

.81

.82

.83

.84

.85

.86

.87

.88

.89

1.476092
1.591352
1.725701
1.883578
2.07083

2.29527
2.56756
2.90251
3.32128
3.85488

- .940082
-1.022432
-1.117624
-1.228709
-1.359573

-1.515621
-1.704062
-1.934972
-2.22272
-2.58838

119.7926
129.3533
140.4952
153.5868
169.1134

187.7236
210.302
238.080
272.814
317.080

.40

.41

.42

.43

.44

.45

.46

.47

.48

.49

.717805

.705497

.694587

.684992

.676641

.669475

.663446

.658511

.654640

.651808

- .00846535
-.0244898
-.0399126
-.0548125
-.0692620

-.0833284
-.0970743
-.1105590
-.1238390
- . 1369684

54.7569
53.8749
53.1001
52.4264
51.8486

51.3624
50.9640
50.6507
50.4203
50.2710

.90

.91

.92

.93

.94

.95

.96

.97

.98

.99

4.55034
5.48179
6.77183
8.63538

11.47831

16.14551
24.6485
42.8244
94.1889

368.372

-3.06387
-3.69960
-4.57882
-5.84753
-7.78139

-10.95435
-16.73272
-29.0814
-63.9738
-250.217

374.786
452.095
559.197
713.963
950.147

1338.035
2045.00
3556.83
7831.14

30658.4

.50 .650000 -.1500000 50.2020 1.00


