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RIGOROUS SOLUTIONS FOR THE SPANWISE LIFT
DISTRIBUTION OF A CERTAIN CLASS OF

AIRFOILS*
BY

OTTO LAPORTE
University of Michigan

1. Introduction. The problem of the spanwise lift distribution of an airfoil in a
uniform stream of air leads, as was shown by Prandtl,1 to the following integro-
differential equation for the circulation r(y):

1 r+i'2 dy' dT 2r

4 ttV J - 6/2 y — y' dy' mc(y)V
H TT7 = «• (!)

In this equation y is the span coordinate, and —\b^y^^b\ V is the velocity of the
air at infinity, its direction being parallel to the x-axis; c(y) is the chord function de-
termining the shape or planform of the airfoil; m is a numerical constant, which the
theory of wings of infinite span fixes at 2tt but which seems to have an experimental
value in the vicinity of 5.5; a is the geometric angle of attack, which for flat wings
is a constant but for twisted wings is a given function of y. For a derivation, the reader
is referred to the papers mentioned in footnote 1; we only wish to note here that the
downwash velocity w is essentially the first term of (1) and has the form

12 r+1 dr,' dT
»(3')=-T   7 77' (2)

w 5 J-i V ~ V

where i) = 2y/b is a dimensionless span coordinate. Because of the singular integrand,
the Cauchy principal value must be taken both in (1) and (2). Of fundamental im-
portance, furthermore, is the elliptic wing of chord distribution

c(y) = CoV 1 — v2 (3)

for which r(;y) is also of elliptic shape while w(y) is constant.
In the extensive literature dealing with solutions of (1) for a given planform c(y),

the following procedure is used almost always: the substitution -q — sin 9 is introduced,
and the chord function c(y) is developed in a Fourier series. It is assumed that T is
also of this form, whence equation (1) is satisfied at a discrete number of y values. This
leads to a system of linear equations for the Fourier coefficients, the solution of which
is usually extremely laborious.

In contrast to this method, the point of view adopted by Trefftz2 seems to me
more powerful. This author considers the potential flow in the complex y-\-iz plane

* Received Feb. 28, 1944.
1 L. Prandtl, Gottinger Nachrichten, 1918, 451, and 1919, 107. Also N.A.C.A. Report 116, 1921.

See also the presentation in Mises and Friedrichs' Fluid dynamics, Brown University mimeographed
lecture notes, 1941, p. 108 and foil.

2 E. Trefftz, Zeitschr. f. Angew. Math, und Mechanik, 1, 206 (1921).
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at a large distance behind the wing. The wake, stretching along the ;y-axis from
— b/2 to +b/2 becomes a line of discontinuity along which the velocity potential
suffers a jump determined by the circulation. The integro-differential equation.(1)
reveals itself as a boundary condition which the velocity potential has to obey along
the line —b/2^y^b/2. "With the aid of conformal transformation the field is brought
into relation with the field outside of a circle of unit radius; then the potential is ap-
proximated by a trigonometric expression and an approximate fulfillment of the
boundary condition is sought."3

In the present paper the point of view which was used by Trefftz is extended, but
instead of "seeking an approximate fulfillment of the boundary condition" for an
arbitrary chord function c(y), a simultaneous choice of the function and of a con-
formal mapping function transforms the problem into a boundary value problem of
classical type, which can be solved rigorously and in every detail. The resulting
formulae lend themselves readily to numerical computation.

The family of planforms to which one is led in this fashion is represented by the
equation

f(y) = co[(i - i/2)(i - kV)]1/2- (4)

For
0 ^ k ^ 1, (4')

this results in airfoils of taper greater than in the elliptic case (3), while for

O^Si, (4")

airfoils blunter than the elliptic ones are obtained. Fig. 1 shows the entire family for
a fixed span and aspect ratio.4

k=3-f8-

Fig. 1: <vf=8.

To be sure, for a given planform elaborate approximate methods, such as the
Fourier series method described above, will probably always have to be used. How-

3 v. Kdrm&n and Burgers, in vol. II of Durand's Aerodynamic theory, Springer, Berlin 1935, p. 171.
4 The aspect ratio zA is defined as b'/S, where 5 is the area of the wing. For the calculation of 5

as a function of k, see (22).
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ever, we shall now show that at least for one planform family, which depends on two
parameters, the problem can be completely solved. It is hoped that the method used
here will be generalizable so as to furnish perhaps other chord functions in the future.
At any rate, for a planform which is close to one of family (4) a method of successive
approximations can be readily set up.

It seems that a comparison with the methods used in the theory of wings of infi-
nite span is not superfluous. Here rigorous solutions are available for certain families
of simple profiles, the simplest one of which is that of Joukowski. Although the de-
signer will probably not be satisfied with such a simplification and will turn to more
elaborate methods, there is an advantage in having easily derived formulae in closed
form—both as far as quick estimates and classroom presentation are concerned. In
lectures it is standard procedure to present the flow around the Joukowski and per-
haps also around the Karman-Trefftz profiles before turning to more general meth-
ods; on the other hand, when dealing with wings of finite span, the derivation of
Prandtl's equation (1) is usually followed only by a detailed discussion of the elliptic
case and then by a mere description of the Fourier series methods. The formulae
given below are intended to fill this gap.

2. Prandtl's equation as a boundary condition in the complex plane u=y+iz. A
brief recapitulation of Trefftz's work2 is necessary following the presentation of Mises
and Friedrichs.1 In the y+iz plane there exists a flow derivable from a potential
4>(y, z). This potential is everywhere continuous except on the projection of the airfoil

% = 0, - 4/2 ^ y =£ + b/2, (5)
where, because of the existence of a circulation, </> is discontinuous. Assuming that the
values of </> at opposite points of the slit (5) are equal and opposite, we have

r(y) = 4<#>(% 0). (6)

The downwash velocity w becomes

My) - Q- (,)
The problem is therefore to find a solution of the Laplace equation

A <(>= 0 (8)

which on the upper side of the slit (5) satisfies the boundary condition

8<t>(y, 0)
\dzJo mc(y)

= - Va(y). (9)

This condition results from substituting (2), (6) and (7) into (1). The corresponding
condition on the lower side of the slit differs from (9) in that the sign of the second term
is opposite.

Condition (9) characterizes the present problem as a boundary value problem of
the third kind. As mentioned earlier, Trefftz now maps the region outside slit (5) into
the interior of the unit circle by means of

-7("T> (10)
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Through the introduction of polar coordinates / = r(cos 8+i sin 6) he is then led to ap-
proximate solutions having the form of a Fourier series in 0.

It is evident that, because of the occurrence in (9) of the function c(y) in the co-
efficient of cf>(y, 0), exact solutions of the problem will in general be difficult to obtain.
But let us also examine the effect of a conformal mapping upon (8) and (9). While
the former is invariant under arbitrary conformal transformations the latter is not,
because of the occurrence of the first derivative. One may say that each conformal
transformation causes a new variable coefficient to appear both in the </> term on the
left and on the right side of (9).

We propose to let these two effects counteract one another and to choose both ap-
propriate conformal transformations and appropriate chord functions c(y) so as to
arrive at a boundary condition with constant coefficients which lends itself to treat-
ment by classical methods. An example will best serve to illustrate this procedure.

Instead of introducing real polar coordinates within the circle into which the slit
(5) is mapped by (10), we shall map the interior of the circle onto the strip bounded
by the points 0, + °o, + 00 +2iri, 2xi of a X plane by means of

b
t = e\ u = — ch X, (11)

2

where X =/*+«>. The potential must be a solution of the Laplace equation in X and n,
and must satisfy the following boundary condition along the imaginary axis onto
which the circle \t\ =1 is mapped:

Wo
4b sin v

<£(0, v) = — \bVct sin v. (12)
dfi/ o mc(jb cos v)

In order that the coefficient of 0 be a constant we must choose c(%b cos v) proportional
to sin v, whence, by virtue of (11), we have the elliptic chord distribution (3).

3. A transformation mapping the interior of the circle |/| =1 into that of a rec-
tangle. We now replace the function (11) by others which map the interior of the unit
circle into various other regions. Each time, in order to have a boundary condition
with constant coefficients, an appropriate chord function must be chosen. When
mapping the unit circle of the t plane into a rectangle in the usual Schwartzian way
such that four arbitrarily chosen points on the periphery correspond to the corners,
a chord function results which possesses singularities at those points of the span
which are the images of the corners. It is, however, possible to map a rectangle onto
the unit circle, such that two opposite sides of the rectangle become two opposite
semicircular arcs while each of the two other sides of the rectangle map onto a slit
protruding radially part way into the circle.6 This is illustrated in Fig. 2. The mapping
function which accomplishes this is

r— 2 K
/ = y/k sn Z, (13)

7r

where the circle is in the <-plane (t = r+w), the rectangle is in theZ-plane (Z = X+t'Y),

5 i1 G. Holzmiiller, Einfiihrung in die Theorie der isogonalen Verwandtschaften, 1882, p. 256 and foil.
See also Cayley, Collected papers, vol. 13, papers No. 891, 920, and 921.
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k is the modulus of the elliptic function and is between 0 and 1, K is the complete
elliptic integral. We now separate real and imaginary parts by means of the addition
theorem of the sn function and put

x K'
V = ±  (14)

4 K

In view of the fact that sn(iK'/2) =ik~112, we obtain readily

sn 2KX/t cn 2KX/t dn 2KX/ir
r = (1 + k)    s=+  - — • (15)

1 + k sn2 2KX/r 1 + k sn2 2KX/t

Therefore
r2 + 52 = 1. (16)

Thus the upper straight line (14) maps into the upper semicircle, and lower one into

t-plane z-plane

Fig. 2.

the lower. If in (15) we set X = + 3X, we obtain 5 = 0. The four corners of the rectangle
are hereby fixed. To see what corresponds to the vertical sides, we set Z = +7r/2 Y
in (13), to obtain

r = ± Vk nd Y, (17)

where &'2=1— k2. The slits protruding into the circle along the real axis therefore
terminate at r= +k1/2.

4. The boundary condition in the Z-plane. For the upper side of the rectangle, this
condition becomes, by use of (9), (10) and (13),

/ d<f> \ 8 / du\ ( tt K' \ f du\
( —) + ( )  ) = Va[ ) (18)
\SY Z-rK'/iK tnc \dZ/xK'/tK \ 4 K / \dZ/rK'HK

where
du b _ / 2K \ 2K 2K

 =—\fk K ( 1 — kr1 ns2 Z ) cn Z dn Z (19)
dZ 2ir \ x / x x

and Z must be put equal to X+ittK'/AK. The chord c(y), now regarded as a func-
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tion of X, must be chosen proportional to (19). Therefore it becomes necessary to
express (19) as a function of y in the original u plane. We have at first from (13),

du bVk K
dZ ~ 2tt

where | / | =1. Using for the moment the angle v as in (12), this may be written in the
form

du ib^TkK f /I Vl1'2
dZ t

sin v j^2 cos 2v —

which, since cos v = t], becomes finally

^=-bK{1 + *)[(1 - „2)(1 - «V)]1/2. (20)
dZ x

The abbreviation

7-T(^+vi) (21)
was used, where k is between 0 and 1. We see thus that we are led to the planforms
(4), (4') which represent wings of taper greater than the elliptic wing.

Before (4) and (20) are substituted into (18), it is convenient to calculate the area
S and the aspect ratio iA=b*/S. It stands to reason that the area

/in c,[(l -^(l - *W)]wdy
-6/2

is expressible in terms of the complete elliptic integrals E and K of k, but in view of
the fact that (21) is the well known Landen transformation, 5 can also be reduced to
the complete elliptic integrals of the modulus k. The result is

5 = bcdG(k), (22)
where

1 ri + 6k + k* "I
G{k) = 77 , , i " (1 " *)(1 " 3k)K(k) . (2206tL 1 + i J

G(k) is a purely numerical constant depending on taper. For the aspect ratio we have

(23)
and for the average chord c,

c = G(k)Cg. (23j)

Substitution of (4), (20) and (23) into (18) gives the final form of the boundary
condition,

/d<f>\ 8 x / 7T K'\+--(! + k)GKJx,~ —)
\dr / k'hk it m \ 4 K /

Vb
2*

r~ r f 2K \ 2K 2K "I\/k K \ a ( 1 — k 1 ns2 Z J cn Z dn Z . (24)
L \ T / IT T J Y-tK'HK



238 OTTO LAPORTE [Vol. II, No. 3

Variable coefficients now only occur on the right. It should be noted that for
Z = X+iirK'/AK the right-hand side represents a real function of X.

5. Solution of the boundary value problem for tapered wings. This solution has
to satisfy the following requirements:

(1) Inside the rectangle |X| ^ir/2, | Y| ^irK'/AK, it must satisfy Laplace's equa-
tion.

(2) On the top side Y = ttK'/4K it must satisfy (24).
(3) On the lower side it must satisfy a similar condition differing from (24) only

in the sign of the first term.
We shall seek a solution of the form

<I>(X, F) = £ sh nY{An cos nX + Bn sin nX). (25)
n

In this series each term is a solution of the Laplace equation. The sh function of Y
is alone present because of condition (3), or in other words, because we want 0 to
have equal and opposite values at opposite points on slit (5) in the y-\-iz plane. To
determine A„ and B„ the right-hand side of (24), considered as a function of X, has
to be expanded in a Fourier series.

At this moment it should be remembered that for twisted airfoils a is a function
of y or tj. It will be an even function as long as the ailerons are in their normal position.
Otherwise, a may have an odd component or may even be discontinuous. At the pres-
ent time only the case of constant a will be treated.*

To develop the right-hand side of (24) into a Fourier series we begin with the
familiar series' for sn:

2K * x K'
sn Z = 2^ an sin (2n + 1 )Z, an =  cosech x(» + $) • (26)

•o Kk

This series converges uniformly as long as ]/(z)| <ttK'/2K, i.e., within a horizontal
strip whose median line is the real axis and whose width is wK'/K. But since this is
just twice the vertical dimension of the rectangle of the boundary value problem (see
Fig. 2), series (26) will certainly converge absolutely anywhere that it is needed at
present. We differentiate and put Z =iirK'/4K+X, to obtain

2 K
cn 

T

2K x - / x K' \
Z dn Z =  £(2n+ l)a„ cos (2» + l)(i + * ).

x 2K „0 \ 4 K ) (27)

To get the other part of the right-hand side of (24), we put Z=ivK'/2K-\-Z',
whence

2 K 2 K
ns Z = k sn Z\

T T

• More general cases of twisted airfoils are being computed at present and will be reported on else-
where.

7 See, for instance, Whittaker and Watson, Modern analysis, 4th ed., Cambridge University Press,
p. 510.
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The application of (26) with Z' as the variable gives

2A *
kr1 ns Z = 23 a" s'n (2" + l)Z'.

TC n=0

After differentiating with respect to Z or Z', we put Z'= —iirK'/AK + X (which is
the same as putting Z =-\-iirK'/4K-\-X), to obtain

2A 2K r « / x A' \
— k~l cs Z ds Z = ^2 (2tt + l)a„ cos (2tt 1) ( — * — + X J.

TT 7T 2 A „_o \ 4 A /
(28)

The sum of (27) and (28) furnishes the desired series which, because of the second
formula of (26), may be written in the form

/ 2K \ 2K 2 K tt~ * cos
I I — k~~l ns2 Z ) cn Z dn = ^2 (2« + 1) 
V IT J T 1T 2Kik „o sh (w

cos (2m + l).Y

(m + \)tK'/2K
(29)

where it is to be understood that Z = iirK'/4K+X. This series converges uniformly
for all real values of X.

The final solution of the problem can now be written down. Introducing (29) and
(25) into (24) one obtains for the velocity potential,

r Vab " sh (2n + 1)F cos (2m + 1)*
4>(X, Y) =   2   ——   —» 30

4 AV/fe n^o Dn sh (2m + l)xA'/4A
where

x K' 8 cA (1 + k)GK r K'
Dn = ch (2m + 1) ——— +   — sh (2m + 1) — — • (31)

4A v m 2n + 1 4A

This series converges uniformly as long as | Y\ <irK'/2K, which is more than we
need for numerical calculations, since the rectangle only extends to F= ±ttK'/AK.

Of greater practical importance than </> is the sectional lift or the sectional lift
coefficient ci which may be defined as follows: let I be the lift per unit span,

I = \pVHc,, (32)

where c is the average chord (23i). Since from (6) I is also ApV<l>(X, irK'/4K), the
following expression results:

oc J

c, = 2TO   x;  cos (2m + 1)X. (33)
AV k n=>0 Dn

For this rapidly converging series, numerical tests have shown that three or four
terms suffice to give a result correct to one part in ten thousand. To formula (33)
should be added the relation between X and the original span coordinate y. From (15)
and (10) it is found to be

b sn2AA'/V
y = — (1 + k) — • (34)

2 1 + k sn2 2KX/t

Formulae (33) and (34) give the spanwise lift distribution as a function of y.
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6. Results for the blunt wing. The method of the previous section may readily
be used to get similar results for wings blunter than elliptic ones. The underlying idea
is the following: in section 2 we mapped the t circle onto a square such that the semi-
circle in the upper half plane became the upper side of a rectangle in the Z plane,
and correspondingly for the lower semicircle. Now, the interior of the unit circle in
the t plane will be mapped so that the right and left semicircles will correspond to the
right and left sides of the rectangle, while two slits from ±i to will correspond
to the upper and lower sides. In short, the role on the real and imaginary axes in both
planes will be reversed. Results will merely be given and formulas will receive the
same numbers as the corresponding formula of the "tapered" case, except that primes
will be added.

The mapping just described is performed by

/_ 2 Kt = i 1y/k sn iZ. (13')
7T

Upon putting X = ±irK'/4K the point in the /-plane moves on a circle r2+s2 = l,

t-PLANE Z- PLANE

Y

13] 12} [' ]

[4]

ir
2

4 K

[5] [6]

Fig. 3.

while Y— +t/2 gives the slits along the imaginary axis of t. This is shown in Fig.
3. The interior of the unit circle of the t plane is then mapped by means of (10) onto
the exterior of the slit (5) in the u plane.

The boundary condition, now along the two vertical sides, becomes

with

/ d<f>\ 8 / du\ / 7r K' \ / du\
( ) +—( J <!>[ ; F ) = i~1Va ( ) , (18')
\dX/rK'HK imc\dZ/rK'/iK \4 K ) \dZ) tK'hr

/ du\ b / 2K \ 2K 2K
I ) = — y/k K[ 1 + k-1 ns2  iZ ) cn  iZ dn iZ, (19')
\dZ J tK'/AK 2ir \ 7T / 7T 7T

which is imaginary for Z =irK'/4K-\-iY. The determination of the planform results
from expressing this in terms of tj :
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1

where

= —bK( 1 - *)V(1 - 7?s)(l + *'V), (20')
i K'HK T

<21''

The different signs should be noted. The two |
functions k of k' of k are plotted in Fig. 4.
In this way a planform blunter than the elliptic
one results, namely (4), (4"). When k' becomes
greater than one, the chord function has a maxi-
mum between 77 = 0 and 1. The bluntest wing
shape without such a maximum is attained for
k' = 1 or

kCR = 3 - V8, (35)

in which case the lemniscate functions result.
Thus the formulae of this section, while being
valid for any k between 0 and 1 have aero-
dynamical importance only for k between 0 ^
and kCR* Fig 4

The area of the wing becomes

5 = koG(- k), (22')

where G( — k) is the function in equation (22i) for negative k.9 In the case of (34),
which interests us especially, the elliptic integral becomes reducible to Gamma func-
tions :

87402
r(7/4)

Formulae for zA and the mean chord c are taken over with G{—k).
For a constant angle of attack, the only case treated below, the function in (19')

will be developed in a Fourier series on the vertical sides X = ±irK'/4K of the rec-
tangle. This is readily accomplished, the difference from (29) being that only terms
in sin (2n + l) Y occur. The final result for the velocity potential is

«x, r).-—± 'M2»+Wsln(2„+l)Ft
4 KVk fo An ch (2m + l)irK'/4K

where

t K' 8 <A (1 — k)G{- k)K v * K'
£n = sh (2m + 1) +   — — ch (2m + 1) (310

4 K ir m 2m+1 4 K

8 The mapping for k=3 — \/8 is studied and illustrated by figures in Holzmiiller's book (see foot-
note 5).

9 However, E and K depend only on k1.
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Convergence properties are the same as before. The sectional lift coefficient (32) is
given by

c, = 2? £ — sin (2n + 1 )F, (33')
Ky/ k „_o An

while the relation between the variable Y and span coordinate y is now

b cn 2KY dn 2KY/-W
y =   (34')

2 1 + k sn2 2KY/ir

7. The elliptic wing as a limiting case. From (20) or (21) it is evident that the
chord function represents an ellipse when k goes to zero. For decreasing k the elliptic
integrals K and G approach ir/2 and ir/4 respectively, while

lim — log — ̂  = 0.

The quotient K'/K becomes large and the convergence of the series (33) improves.
Keeping only the first term we see that

lim |fCh)— — - k"1/21 = 0.
IVsh/ 4 K )

Thus
4 cos X

ci = — am ——i (37)
■k 1 + ■KzA/m

which is in complete agreement with Durand II, p. 169, since now cos X = (1 — tj2)1'5.
8. The limiting case of extreme taper, k = 1. This case is of more interest than the

preceding one, inasmuch as it leads to new and simple formulae in closed form. It
follows from (20) that the planform is now given by

c = c„(l - t,2), (38)

which represents a parabolic arc or two such arcs joined along the y-axis (see Fig. 1).
Although the lift distribution can be obtained from (33) by letting k tend towards 1,
we prefer to derive it afresh.

The transformation
t = tanhZ (39)

maps the interior of the unit circle in the t plane onto a strip parallel to the X-axis
and bounded by 7= ±ir/4. The points t — ± 1, where the t circle crosses the real
axis move, respectively, towards + <» and — oo. Transformations (10) and (39) to-
gether map the outside of slit (5) in the u plane on the above mentioned strip, in such
a way that the upper and lower sides of the slit become, respectively, the upper and
lower sides of the strip, while the tips (y = ±b/2) move to infinity.

The boundary condition on the upper side is the same as equation (18), except
that the subscript on the various derivatives now is F = 7t/4. Since the transformation
from the u to the Z plane is now

u = \b coth 2Z, (40)

as is seen from (39) and (10), we have as the analogue of (19) the equation
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(—\ = b sech2 2X, (41)
\ dZ / Y~.rH

which, when expressed as function of 77, becomes b( 1 — j?2). Hence the chord is chosen
as in (38). We note the formulae for mean chord c, area S, and aspect ratio 'R.:

2 2 .36
c = —Co; S = —Jco; =   (42)

3 3 2 c0

The final form of the boundary condition on the upper side of the infinite strip is

16
f

r/4

/ d<f> \ 16 zA / 7T \
( J + <t> ( x, — ) = Vab sech2 2X. (43)
WA/4 3 m \ 4/

Due to the fact that the range of X is from — =0 to + 00, the right-hand side of (43)
must now be expanded in a Fourier integral. This can be done by standard methods,
the result being

1 r°° cos tx
sech2 2X = — I — — • (44)

4 Jo sh irf/4

For the velocity potential <p(X, Y) we assume a solution of the form

<I>(X, Y) = f dUtt) sh rr cos fx,
J 0

(45)

where the integrand satisfies the Laplace equation. After introducing (45) and (44)
into (43), A (J") is easily determined. The final form for 4>{X, Y) is

1 C °° sh f Y cos £X
<t>(X, Y) = — Vab  df,

4 Jo D(f) sh irf/4 (46)

where
7r 16 c/f sh rf/4

£>(f) = ch-f + - —• (47)
4 3 m i;

The sectional lift coefficient assumes the form

, cos t;X
Ci = 2zAa I df. (48)

Jo D(r)
The integral in (46) converges for all X and Y within the strip under consideration.
In order to obtain from (48) the lift distribution as a function of y, we note here that,
due to (40),

y = \b tanh 2X. (49)

The above integral may be brought into a rather different and interesting form
which makes the numerical evaluation very much easier. Let us consider the integral

'+K rdr cos rf , (50)
t ch r + a sh t/:

which, except for a simpler notation, is the same as that in (48). On the imaginary t
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axis, the integrand has infinitely many poles, which can be computed as the roots of
the transcendental equation

<t cos <r + a sin a = 0. (51)

Denoting the «th root by cr„, we find from this that

cos cr„ = (- l)"a(a„ + a*)""1, sin <r„ = (- 1)»+Vn(a2 + eft-"*. (51')

For r = 0 the integrand is regular. It now becomes convenient to decompose the cos
in the numerator into two exponentials. Two integrals arise in this way, one contain-
ing exp fr£, the other exp (—ir£). According to a standard argument, the integral with
the positive exponential tends to zero when integrated along the circumference of a
large semicircle in the upper half plane, as the radius increases; similarly for the other
integral and a semicircle around the origin in the lower half plane. Thus the integral
with the positive exponential, taken along the real axis from — °o to + °o, is equal to
the sum of the residues at the poles <rn which lie in the upper half plane, and the in-
tegral with the negative exponentials is equal to the sum of the residues at the poles
of the lower half plane.

Applying these considerations to (48) we see that the quantity a, which deter-
mines the roots of the transcendental equation, has the value

8 <vf
<* = --> (51")

3 m

while the sectional lift coefficient is given by

JL Cnffl2 + fnl1'4
ci = 8*^1; (- 1)~« -y————— (52)

n=0 0(0 + 1) + fn

This is a very rapidly converging series, which, although especially convenient near
the wing tips, may be used to advantage for values of 77 as small as .3 or .2. Very near
the wing tips X is approaching 00. Hence, using (49) we may write approximately

ci[a2 + fi]1'2 /I — y\°llr
ci = SokA—  —( -) , (52')

a(a -f- 1) + cj \ 2 /

which shows that ci has a vertical tangent at the tips since <7i is between x/2 and ir.
The only inconvenient region is that of small X, especially the point X = 0. It

seems that only graphic integration can be used to find Ci at the center of the wing
from formula (48).

9. Total lift and total induced drag. For these important quantities rapidly con-
vergent expressions are readily derived. The total lift L is obtained by integrating
pVT across the span,

/+n 24>(y, 0)dy,
-6/2

and transforming to the Z plane, to obtain

r+'i* / x K'\/du\
L = 4PV <t>( X, )( ) dX.

J_x/2 \ 4 K )\dZ JrK'/iK
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The two Fourier series for <j> and du/dZ are then substituted from (30), (19) and (29).
From the completeness relation it follows that the integral of the product of the two
series is equal to the sum of the products of the coefficients. Instead of the for-
mula for L, merely the final formula for the over-all lift coefficient cl, defined by
L = %pV2Scl, will be given:10

 h±l  (S3)
4 K2k Dn sh (2n + \)*K'/IK

The abbreviation Z>„ was defined in (31). In the limit of vanishing k this reduces ex-
actly to formula (2.15), p. 169 of Durand, Vol. II.

For wings blunter than elliptic ones the result is

tt3 cA " In + 1
cl = T,  » (53')

4 K2k „0 A„ ch (2m + 1 )*K'/4K
where A„ is the coefficient defined in (31').

For the parabolic wing treated in section 7, it is necessary to go through the opera-
tion just described for the Fourier integrals (44) and (46). The lift coefficient is now

"■ „ C ° j -j
Cl = —irAa I ■—  —— • (54)

2 J o
jdj

D(r) sh Tf/4
For the induced drag Di similarly simple formulae may be obtained. Using (7)

we have first in the original M-plane (u=y+iz)
. b/lr"12 (d<t>\

Di = 4p (f>(y, 0)1 — ) dy.
J-b/2 \dZ/o-1/2 \ dZ / o

In the Z plane of the tapered wing this may be written

\ 4 Kj\dYjWK'iiK

Now the completeness relation must be applied to the Fourier series (30) and its
own derivative. The result is, expressed in terms of the drag coefficient,

ir3 a2iA - In + 1 w K'
cd =  coth (2» +1) ' (55)

4 K2k ZZ D2 4 K

while for the blunt wing we have

tt3 a2^f » 2n + 1 iv K'
cd =  tanh (2» +1) > (55')

  4 K2k Zi A* 4 K
10 Formulae (S3) and (54) may be derived in a different way without appealing to the completeness

relation. The velocity potential </>(y, z) is only the real part of a complex stream function F(u) in terms
of which the total lift may be written in the form

L = 2pVRe (j) F{u)du.

When transformed into the Z-plane, this becomes a contour integral around the rectangle of Fig. 2.
This integral can be carried out simply by applying Cauchy's theorem. The same can be done for the
rolling moment. This method recalls the Blasius theorem in the theory of infinite span.
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and for the parabolic wing

it , r°°
Cd = —I  coth — • (56)

2 Jo D2(f) 4
Formulae (53) to (56) give the dependence of lift and induced drag upon aspect

ratio osf and taper k. However, it is not necessary to compute more than cL, for there
exists the following simple relation between cl and cD-

. dcL
Cd = ctzA — • (57)

dzA

Thus after having plotted a set of curves showing the dependence of cL upon the as-
pect ratio, one may obtain cd by graphic differentiation.

Further over-all quantities of practical interest are the rolling moment

and the yawing moment

/D/2 0)ydy,
-b/2

rbn {50 \
4p I <t>(y, 0) I — ) ydy,

J -6/2 \ OZ /o

but since in this paper we have confined ourselves through out to constant angles of
attack, they will vanish. However, when a(y) is assumed to have an odd component
the methods described here still work and the above moments yield formulae of type
(53) to (56).

10. Numerical results. All formulae given in the preceding sections for the sec-
tional lift coefficients are readily evaluated, due to the fact that the series converge
rapidly. An exception is ci for the parabolic wing shape for small or zero span coordi-
nate, in which case it is necessary to resort to graphic integration. Following
v. Karman and Burgers,3 we plot cjma as a function of the span coordinate tj rather
than Ci itself. In this way it is necessary to, vary only the two parameters zA/m and
the taper constant k.

In Tables 1 and 2 values of ci/ma are given which are computed from formulae
(33) and (34) for k = y/A and k = \/.2. In the first column are the values of 2KX/ir
which quantity serves as a convenient parameter, in the second X, in the third rj,
computed by means of the tables by Milne-Thomson11. In the last three columns the
values of Ci/ma are to be found forvA/m equal to 1.0, 1.5 and 2.0, corresponding to
aspect ratios of about 5.5, 9.25 and 11.

Among wings blunter than elliptic only the one with &CR of (35) has been com-
puted using formulae (33') and (34'). However, since elliptic functions with k values
as small as &CR were not tabulated by Milne-Thomson, equation (34') was expanded
in powers of that small constant. Values of Ci/ma. are given in Table 3.

Finally in Table 4 the same data are given for the parabolic wing of section 7.
In column 1 are the values of the parameter X, in column 2 the jj values obtained from
it with (49), and in the next three columns the values of ci/ma. For X = 0, .1, .2 they
were obtained by graphical integration from (48), and for all greater values of X from

11 L. M. Milne-Thomson, Die elliptischen Funktionen von Jacobi, Springer, Berlin, 1931.
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(52). The roots of the transcendental equation (51) do not seem to have been calcu-
lated before, at least not for the values (51") of the constant a. They were determined
to five significant figures.

These tables are supplemented by the following figures: Fig. 5 makes possible a

quick determination of the span coordinate associated with a certain coordinate value
on the side of the rectangle of the boundary value problem. The two curves marked
k = y/A and k = y/.2 represent plots of equation (34) and go with Tables 1 and 2.

Table I
Tapered Wing k = \/.\

2KX/-7!

0
.1
.3
.5
.8

1.1

X

0
.09742
.29225
.48709
.77934

1.07159

Ci/ma

zA/m = \

0 1.0191
.13096 i 1.0070
.37801
.58643
.80778
.93247

.91652

.76447

.50527

.28109

zAlm = 1.5 1 <v//»! = 2

1.1207
1.1068
1.0026

.82908

.53846

.29429

1 .1807
1.1655
1.0527

.86553

.55574

.30021

The third curve is a plot of equation (34') and goes with Table 3. Figs. 6, 7, 8 show the
dependence of lift coefficient upon aspect ratio and taper. They should be compared
with Fig. 75 of Durand, vol. II (which was computed by the approximate method de-
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k= I 

k
k = 0  
k=3—rs*-
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4 .5 .6
Fig. 8. iA/m — 2.0.

Table II
Tapered Wing k = \/'.2

2KX/ir

Ci/ma

zA/m = 1 zAlm — \.h ri/llm— 2

0 0
.1 .09465
.3 .28394
.5 .47324
.8 .75718

1.1 1.04113

0
.14380
.41052
.62545
.83613
.94328

1.0306
1.0150

.90134

.72028

.44105

.23139

1.1365
1.1184

.98667

.77905

.46565

.23804

1.1987
1.1792
1.0370

.81219

.47700

.24100

Table III
Blunt Wing k = 3 — y/&

ci/ma

zA/m = \ zA/m = l.S

x/2 0
1.2 .30920
1.0 .47438

.7 .70700

.5 .83962

.35 .91816

.91288

.88828

.84591

.71481

.56705

.42178

.98248

.96045

.91985

.78512

.62678

.46800

1.0205
1.0006

.96191

.82654

.66262

.49601
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Table IV
Parabolic Wing k = 1.0

Ci/ma

X zA/m = \ d/f/m = \.5 zAlm = 2

0
.1
.2
.4
.6
.9

0
.19737
.37995
.66404
.83365
.94681

1.050
1.020

.9297

.66568

.42208

.17295

1.164
1.130
1.029

.71789

.43141

.17296

1.230
1.166
1.057

.74320

.44003

.17297

scribed in the introduction). The lift coefficient shows, of course, the expected span
dependence, inasmuch as a more highly tapered wing gives rise also to a more highly
tapered lift curve. Of special interest is the parabolic case, for which the lift coefficient
goes to zero with infinite tangent although the chord function c(y) has a finite tangent
at the tips.
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