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ON THE BENDING OF A CLAMPED PLATE*
By A. WEINSTEIN (University of Toronto) and D. H. ROCK (Rkode Island State College)

The present paper contains an application of a recently developed variational
method! to the boundary value problem of the bending of a clamped plate of arbi-
trary shape. It will be shown that this problem can be linked to the simpler problem
of the equilibrium of a membrane by a chain of intermediate problems, which can be
solved explicitly and in finite form in terms of the membrane problem. In the inter-
mediate problems, the deflection converges uniformly in the domain of the plate
(including the boundary) to the deflection of the clamped plate, and the derivatives
of all orders of the deflection converge uniformly in every domain completely interior
to the plate. (In the Ritz method, not even the convergence of the slopes can be
guaranteed.?) The method yields numerical results for plates of all shapes for which
the membrane problem (which we shall call the base problem) admits an explicit solu-
tion. As an example we shall consider a clamped square plate under a uniform load.
This problem has been the object of numerous investigations, some of which are
theoretical, while others are purely numerical, use infinite simple and double series,
and operate with an infinite number of linear equations and an infinite number of
unknowns.* An inspection of the general formulae derived in the present paper, for-
mulae which become simple in numerical applications, would show how some of the
numerical methods might be rendered rigorous.® The convergence of higher deriva-
tives is of great practical interest for the approximate computation of the stresses.
(Cf. Handbuch der Physik, Springer, Berlin, Vol. VI, 1928, pp. 220-221.)

Let us denote the domain of a clamped plate by S and its boundary by C. The de-
flection w(x, y) corresponding to a load ¢(x, ¥) and to a flexural rigidity D satisfies
the differential equation

AMw = ¢/D (1)
with the boundary conditions '

w =0, (2) dw/dn = 0, 3)

on C. It is well known that w is the solution of the variational problem VP,

J(w) = fj; [(Aw)? — 2gw]dxdy = min.,

* Received Feb. 8, 1944.

1 A. Weinstein, Mémorial des Sciences Mathématiques, No. 88, 1937,

* Cf. R. Courant, Variational methods for the solutions of problems of equilibrium and vibrations, Bull.
Amer. Math. Soc., 49, 1-23, 1943, especially p. 11. See also K. Friedrichs, Math. Annalen, 98, 217, 1928,
The method of finite differences does not give satisfactory numerical results for clamped plates.

3 The bibliography given in S. Timoshenko, Plates and shells, McGraw-Hill, 1940, p. 222 covers
papers from 1902 to 1939 and shows the persistent interest in this problem.

¢ H. W. March, Trans. Amer. Math. Soc., 27, 307-317, 1925, proves the weak convergence of the
approximations given by his series. Cf. I. S. Sokolnikoff, Mathematical theory of elasticity, Brown Univer-
sity, 1941, p. 387. '

& Cf. for instance a note by C. Miranda, Rend. Semin. Mat. di Roma, 1, 262-266, 1937.
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where §=¢/D and the boundary conditions (2) and (3) are in effect. By withdrawing
the condition dw/dn =0, we obtain the variational base problem VP,: J(w,) =min.,
with the condition wy,=0 on C. The corresponding differential equations problem
DP, is: AAwy =g, with the boundary conditions wy=0 and Aw,=0 on C, the latter
condition being a natural boundary condition which is automatically satisfied by a
solution of VP,. It is well known that DP, can be solved in terms of the problem of
the equilibrium of a membrane. In fact, putting Awy,=f, in DP, (wy=0 on C), we
have Afy =g in the domain S and fy=0 on C.® Let us denote the solution of the equa-
tion Aw, =f, with the boundary condition we,=0 by wy,=Gf,. Thus we have fo=Gg,
whence wo=GGq. (The formula wy,=Gf, can be written explicitly in the form

W = — ffsg(x, y’ E’ ")fo(fr ﬂ)dgdﬂr

where g(x, v, £, 1) is the Green’s function for the domain S.)

We now link VP, to VP by a chain of intermediate variational problems
VP, VP, - - - introduced in the following way. We let pi(x, ), pa(x, 3), - - - de-
note a complete (but not necessarily orthogonal) sequence of linearly independent
harmonic functions in S. (It has been shown, l.c.,! how a sequence of this kind can
be derived from the solutions of the problem of a vibrating membrane for any do-
main S.)

VP, (m=1, 2, - - -) is then defined as the problem of finding the solution w,, of
J(wms) =min., with the boundary conditions

dwm

w
dn

'w,,,=00nC, f?k ds=0' k=1,2'...,m.
c

By Green’s formula these conditions can be replaced by the conditions
w’n=00n C, (phAwm)‘_'ov k=lr 21"’;"’1 (4)

where

(Br, Awm) = f f PrAwndxdy.
s

(Similar notations for the “scalar product” of two function, like p; and Aw,,, will be
used throughout this paper.) The corresponding differential problem DP,, is given by
the differential equation

Adw, = ¢ )

with the conditions (4) and the natural boundary condition
Awn = amip1 + Gmep2 + - - - + Gmmpm on C, (6)
where am1, ms, * * *, Gmm are constants to be determined. The solutions of DP,, can

be easily obtained in terms of solutions of the membrane problem already used to
solve DP,. In fact, putting Awn, =fn (wa =0 on C), we have, in our notation, w,, = Gfm.
Also, we obtain from (5),

Afm =g, (7)

¢ For rectangular plates DPs is the problem of the supported plate.
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and from the boundary condition (6),
fm = amlﬁl + amZP? + ctt + Gmum (8)

These can be written as follows:

A(fm - i amipi) = g— in S~ (71)

1=1

f,,. - i dm,'P.' =0 on C. (8')

fe=]
Thercfore we have in .S

m

fm - Z amipi = Gq-v (9)

=1

and since wn = Gfn, it follows that

Wn = GGG+ . amGpi, (10

fa=l

where GGJ =w, is the solution of the base problem.
The conditions (p, Aw,,) =0 yield, in view of (9), the following system of m linear
equations for the m constants am, Gme, * * * , Gmm:

E ami(piy Pk) = - (q-v ka)y k= lr 2) e, m, (11)
=1
which can besolved, since their determinant is Gram’s determinant of the independ-
ent functions py, pa, * * +, Pm, and is different from zero.
In another paper, based on a previously developed method for the computation
of frequencies and buckling loads,” it will be proved that the approximate solutions w,
and their first derivatives converge to the deflection and slopes of the clamped plate.
Here we shall apply our formulae to the case of a uniformly loaded square plate.
The domain S will be defined by the inequalities |x| =w/2, Iyl =<w/2. We put
d=g/D=1. Since the deflection of a uniformly loaded square plate is symmetrical
with respect to the coordinate axes, we may use a sequence of even harmonic func-
tions p.(x, ¥) as given by (12) below.8 All computations can be performed without
the use of Green'’s function for the square. The deflection w, of the supported plate
is given by the well known formulae of Navier.
Calculation of wn for the uniformly loaded square plate.

We use the set of functions

cosh a;x cos a; cos a;x cosh a; .
pils, y) = SR oS 2y T cosa % (=2i—-1), . (12)
cosh (air/2)

7 N. Aronszajn and A. Weinstein, On the unified theory of eigen-values of plates and membranes,
Amer. J. Math., 64, 625645, 1942.
8 For non-uniform loading, the sequence given l.c. 1, 716 must be used.
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and denote Gp; by v;. Then, by the definition of G, we have Av;=AGp; = p; in S, with
v;=0o0n C.

If we set v; =u;+u;, where
COS a;y COS ax

cosh (a;r/2) ’ ue = ¥03) cosh (i /2) T |

U = X(x

then X(x) and Y(y) satisfy the differential equations
X" — o?X = cosh a;x, Y" — oY = cosh oy,
with the boundary conditions
X(+ 7/2) =0, Y(+ x/2) =0.

The general solution for X (x) is

1
X(x) = 5

oy

x sinh a;x + A cosh a;x + B sinh a;x,
where 4 and B are determined by the boundary conditions. Hence
1 . T

X =— [x sinh a;x — — tanh }a;m cosh a;x:l.
Zai 2
The solution for ¥(y) is given by a similar expression, so finally

1

™
v; = m{[x sinh a;x — Py tanh ja,r cosh aix] coSs a;y
i o

™
+ [y sinh a;y — 5 tanh 3a;r cosh a;y:l cos a;x} . (13

Using (13), we obtain the general formula for (g, Gp:) =(1, v),

4 sin (air/2)[ 7 1
1, v) = ——— | = sech? 3a;mr — — tanh %anr:l. (14)
o 2 e 5 ’
For (pi, px) we have
8ajaup(— )tk )
(?a’y ?k) = m; 1 # k,
T 1 2
= w[— sech? Ja;r + — tanh %a,ﬂr] + —, 1=k (15)
2 ag a';’.
From (14) we find that
(1, v1) = — 2.670644, (1, v5) = 0.049299, (1, v3) = — 0.006400,

(1, vg) = 0.001666, etc.,

and from (15) we get the following table for (p:, p&), (4, k=1, 2, 3, 4):
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.k 1 2 3 ' 4

i [
1 5.665118 l —0.240000 | 0,059172 —0.022400
2 1.270836 —0.103806 0.049941
3 0.708321 —0.051132
4 0.489615

The equations for the determination of a=; are then
5.665118a,; = 2.670644, for aj,
5.665118a5; — 0.240000¢:: =  2.670644

- } for a;; and as,
— 0.240000a,; + 1.270836a5; = — 0.049299

....................

These yield the successive values
an = 0.471419,
a1 = 0.473564, az2 = 0.050641,
as = 0.473728, as; = 0.048762, as; = — 0.023392,
aq = 0.473749, a4 = 0.048394, a4 = — 0.022656, a4y = 0.010970,

....................................

Then, since the solution for the simply supported plate is given by
16 sin m(x 4 x/2) sin n(y + =/2)
wo(x, y) = pr )ID> —

mn(m? + n?)?
the successive approximations to the deflection are:
w = wo + 0.471419y,,
we = wy + 0.473564v; + 0.0506419v,,

................

(m’”=1’3p5"'°)9

The maximum deflection, which occurs at the center of the plate, is found to be
0.123342 when w, is used. The next approximation affects only the fourth significant
figure.

A calculation of the normal derivative of wa (m=0, 1, 2, 3, 4) along x=x/2 for
values of y from 0 to n/2 at intervals of 7/16 yields:

m| y=0 | x/16 | 2%/16 I 3x/16 | 4x/16 | 5%/16 | 6x/16 | Tx/16 |f/2
0| —.41795 | —.41087 | —.38954 | —.35409 | —.30519 | —.24382 | —.17095 | —.08839 | 0
1| —.00763 | —.00686 | —.00445 | —.00062 | +.00443 | +.00912 | +.01221 | +.01100 | O
2| 4.00197 | +.00122 | —.00047 | —.00189 | —.00208 | —.00060 | +.00216 | +.00355 | 0
3| —.00053 | —.00019 | +.00044 | +.00055 | —.00020 | —.00093 | —.00018 | +.00151 | O
4| +.00029 | —.00003 | —.00031 | +.00008 | +.00036 | —.00021 | —.00033 | +.00066 | 0

The maximum value of the slope in the interior of the plate is found to be about
—0.122; this occurs at x =57/16, y =0. A comparison with the maximum deviation
of the normal derivative along the edge for m =4 shows that the latter is less than 1%,
of the maximum slope in the interior of the plate.



