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THE DYNAMICS OF A DIFFUSING GAS*
By HENRI PUTMAN (University Laval, Quibec)

By use of a hydrodynamical approach, Stefan1 derived the following equation
for the diffusion of two gases:

dpi
Pi£l = A ijPiPj(wi — Mj). (1)

dx

Here pi is the partial pressure of the first gas, px is its density, ux, £iare respectively
the ^-components of the velocity and acceleration of one of its particles, ui, pi refer
to the second gas, and Au is a constant. There are two other equations similar to (1)
corresponding to the y and z-components, and a further set of three equations for
the second gas.

Equation (1) is a simplified form of Maxwell's equation of diffusion.' It states that
there acts on a particle of the first gas a force due to the pressure gradient of the first
gas, and a force proportional to the difference of the velocities of the two gases.

The ordinary equation of diffusion, or Fick's law,' was deduced by Stefan1 from
(1) and the equation of continuity by assuming that £i was negligible.

We shall now assume that is negligible. This is the case in which the second
gas is immobile and the first gas diffuses through it. Some problems involving two
gases can be reduced to just such a problem.4

If now in (1) we set Ui—t, &=dv/dt, Aup*=a, pi=p, pi = p, we obtain

dv 1 dp
dt p dx

The corresponding three dimensional form when there is present in addition a body
force per unit mass represented by the vector F is

dv Vp
_ = F — <jt, (2)
at p

where v is the velocity vector. This equation is the equation of motion of a viscous
fluid with the viscosity terms replaced by a force proportional to the velocity.

We shall now deduce some additional equations which are consequences of (2).
If we multiply (2) scalarly be an arbitrary virtual displacement 5e, we obtain,

since 5=V-5e,
dv dp
—5e = F-5e av-Se. (3)
dt p

* Received Feb. 8, 1944.
1 J. Stefan, Ber. der Wiener Akad. 63 (2), 63-124 (1871).
•J. C. Maxwell, Phil. Mag. (4), 35, 185-217 (1868).
8 R. M. Barrer, Diffusion in and through solids, Cambridge University Press, Cambridge, 1941, p. 1.
4 B. Lewis and G. v. Elbe, Combustion flames and explosion of gases, Cambridge University Press.

Cambridge, 1938, p. 224.
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When the expression vd(8e)/dt = 8(%v2) is added to both sides of (3), we obtain

d dp
— (v-5e) = F-6e — — + — av-Se. (4)
dl p

If now we set 8e=de, where de follows the natural motion of the system, and assume
that F has a potential U, then from (3)

d(i»2) = dU - — - av-de, (5)
P

or
dp

d{\v2) + av2dt = dU   (6)
P

P = Kp, (—= K\np,
J p

If the temperature of the gas is constant, we have

' dp

P

K being a constant. Integration of (6) then yields

%v2 + K In p + a J' v-de = const. (7)

When the only body force is due to gravity, and the x-axis is vertically downward,
U=gx and (7) becomes

K v2 a r
x ln^> I v de = const. (8)

g 2 g g J
We now return to (3). If there is a straight or curved axis of symmetry such that,

if s is the arc length of this axis, v,p, p are functions of s, t only, and if we set 5e = u,8s,
where u, is a unit vector tangent to the axis of symmetry, then (3) becomes

d\ bp
— u,5s = g8x ovu,5s,
dt p

or, since v u, =v,
dv dx 1 dp
— = g av. (9)
dt ds p ds

Now
dv dv dv dv dv

dv = — ds H dt, — = — v H j
ds dt dt ds dt

whence (9) takes the form

dx 1 dp d / v2\ 1 dv a
 i = — ( — )+ +—v.
ds ps ds ds \2gj g dt gpg ds ds\2g

The equation of continuity is

(10)

n —+ —(pn») = o, (li)
dt ds



1944] HENRI PUTMAN 269

where fl is the area of the cross section. When the gas is at constant temperature,
p — Kp, and (10) and (11) become

d ( K \ d (v2\ 1 dv a^(*-7lnf)"*U+7» + 7"' <12)
dp d

0 — H (pQv) = 0. (13)
dt ds

If the flow is steady, dv/dt = 0 and (12) becomes

K p0 Vi v0 a ri
Xi —  In— = 1   I vds, (14)

S Pi 2g 2g g J,„
where the subscripts zero and one refer to two cross sections, both viewed at the
same instant. We set P = h(.Po~\~PO< ̂  = p0 — pi, a = %ir/P, whence

po = P + 2*" = -P(l + <*)> pi = P — hir = P(l — a),
po 1 "f" a

In — = In  = 2 (a + fa3 + • • • ) = 2a(l + Ja2 + • • • )•
pi 1 — a

When the difference of pressure at these two cross sections is small, fa2 is much
smaller than 1 and we have approximately In (po/pi) =2a = w/P. If w is the specific
weight at pressure P, then

Kw K 1 K p0 po — pi
P = Kp =  ) — = — i — In — = >

g gp w g pi w
and (14) becomes

, po-pi v\ vi a
«i -  = 1 I vds. (15)

w 2e 2e e J.„w 2g 2g g J,0

Let us return once more to (2), and operate on it with VX and V-, to obtain

d
dt

(<d \ / co \ a

7M7T-7- (,6)
dd
— = - ad - Vi- [(vrV)v], (17)
at

where u = VXv, 0 = V-v, \f/= U—p/p, p is assumed to be a function of p only, and

Vi[(v1v)v]=02-2Ek-f-X-Y
\d£ by/

i, j, k being unit vectors along the x, y, z-axes, respectively. The equation of con-
tinuity is

dp~ = ~ P». (18)
at

or
dp
-=— V-(pv). (19)
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If a is not a constant, but a function of e(a;, y, z) for example, we must add the
term — (vXVa)/p to the second term in (16).

We shall now examine the propagation of discontinuities in the boundary condi-
tions, in the simple case of one dimension without gravity. Equations (2) and (18)
become

dv dv 1 dp
 1 tH 1- at) = 0, (20)
dt dx p dx

dp dp dv
 1 v + p — = 0. (21)
dt dx dx

If the temperature is constant, p = Kp and these equations become

dv dv K dp
 f- v 1 — = — av, (22)
dt dx p dx

dp dp dv
+ v + P - = 0, (23)

dt dx dx

which are a system of two simultaneous quasilinear equations of the first order. These
equations are usually referred to as Hamburger's equations in two dependent varia-
bles. By standard procedures,5 the ordinary differential equations for the characteris-
tics are found in the form

dt
— = (v + dv + K^p-Hp = - av(v + KU2)~1dx, (24)
dx
dt
— = (v - K112)-1, dv - Kll2p~ldp = - av(v - Kl'2)~ldx. (25)
dx

If x, t, v are regarded as a rectangular cartesian coordinate system, and x, t, p as
a second system, the solutions of Eqs. (24) and (25) can be represented graphically
as surfaces. We may assign boundary conditions as follows:

(a) In both the xv- and the xp-planes, a curve is given.
(b) In the /p-plane, a^curve is given; the corresponding curve in the to-plane must

be determined by means of the characteristics.
(c) In a plane x = const. =d of the xtp-system, a curve is given; the corresponding

curve in the plane x=d of the aci»/-system must be determined by means of the charac-
teristics.

Let us consider, for example, a gas for which K = 13.7 X 104m.2sec.~2, a = 2.75 X10®
sec.-1, with the following boundary conditions i

(a) In the xv- and xp-plane, d = i;o = 0, p =p0 = 0.073 kg.m.-4sec.2 This corresponds
to an initial pressure at rest of 10000 kg.m.-2

(b) In the <p-plane, the curve p=f{t) is given.
(c) In the plane * = 2000 m. of the x/p-system, the curve p = 0 is given.
When d = 0, we find from the first of Eqs. (24) that dt/dx = K~1,2 = 370 m.sec.-1.

Thus the time that the initial discontinuity requires to cover the distance x = 2000 m.
is 5.4 sec.

5 A. R. Forsyth, Theory of differential equations, Cambridge University Press, 1906, vol. 5, p. 435.


