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SOLUTION BY RELAXATION METHODS OF PLANE
POTENTIAL PROBLEMS WITH MIXED

BOUNDARY CONDITIONS*
BY

L. FOX
Imperial College of Science and Technology, London

1. Introduction. The method of relaxation, as originally propounded by South-
well [l], was used to calculate the stresses in braced frameworks. A physical picture
of the method, as presented by him in the Wright Brothers Memorial Lecture for
1941, is the following. At each joint of the structure constraints are applied which
prevent joint displacements and bear all the load. One constraint is then relaxed,
thereby transferring some of its load to the members of the framework and some to
adjacent constraints. Each constraint is relaxed in turn, and more of the load is
imposed on the framework, until the residual loads (still borne by the constraints)
may be deemed negligible.

In a series of eight papers [2:1—VIII ], Southwell and collaborators have applied
relaxation methods to various engineering problems. In some of these the method is
applied to two-dimensional problems [2:111], and solutions are obtained of the
equation

V2w = Z (1)

for any boundary on which w is prescribed, Z being a given function of x and y.
Here Prandtl's membrane analogy [3] is used, in which w is the displacement of a
membrane fastened at its boundary and acted upon by a transverse force Z. The
membrane is replaced by a mesh of uniformly tensioned strings, the mesh lines
forming squares or equilateral triangles, and the tension in the strings being propor-
tional to the surface tension of the membrane. Initially the mesh is flat and the
load Z is taken by constraints acting at the mesh points. The constraints are relaxed
one by one, just as in the framework, until the loads are all taken by the strings, and
the resulting displacements of the mesh points are recorded. Evidently, as the mesh-
length decreases, the approximation of the mesh to the continuous membrane is im-
proved.

In a recent paper [2:VIII], Southwell and Vaisey extend the membrane-net
analogy to obtain solutions of Laplace's equation in the case when the normal
gradient dw/dv, instead of the function w, is given at the boundary. Here dw/dv is
regarded as a line intensity of transverse loading applied round the boundary of the
membrane. This load is then integrated and distributed statically to the strings
which cross the boundary.

There is a mathematical treatment of the above problems, based on finite differ-
ences. For Laplace's problem of the first kind, in which the function is specified on
the boundary, the finite difference equations have been derived [2:111]. They are in
general identical with the equations obtained from the analogy of membranes and
tensioned nets.
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The corresponding mathematical treatment of Laplace's problem of the second
kind, however, in which the normal gradient of the function is given on the boundary,
was not given by Vaisey and Southwell, and it is this treatment with which this
paper is concerned. The finite-difference equations are substantially different from
those obtained in their paper.

The technique presented here would seem to be particularly desirable for prob-
lems in which the boundary conditions involve both the value of the function and its
normal gradient. For then the mechanical analogy becomes somewhat complicated,
especially in the case of solids of revolution, for which the analogy of variably ten-
sioned nets is not attractive.

2. The finite difference approach to the relaxation method. For square meshes
(Fig. 1), we have the approximations

dw d2w
2 a  == w i — w3, a2  == W\ + — 2wa,

dx dx2

a2 v2w = Wi + W2 + W3 + u>4 — 4wo- (2)

Similar formulae are easily obtainable for triangular meshes. The order of the error
in these approximations is known in each case, and decreases with the mesh-length a.

There is a finite-difference equation of type (2) for every mesh point, and the
solution of these equations gives a numerical value of w at each mesh point.

At points close to a curved boundary, such as 0 in Fig. 2, we obtain the finite-
difference equation as follows, in the case when w is given on the boundary. The

2?

3°-
— a —

Fig. 1. Fig. 2. Fig 3.

arm 01 passes outside the boundary, and a linear interpolation along 01 yields
WB = WD-\-{w\. — Wo)h, from which we obtain for the finite-difference equation at 0

W2 + w3 + w4 -|—  ^3 + —J wo - 0. (3)

All these formulae are reproduced identically by the net analogy, but a more
accurate formula than (3) given by Christopherson (4), and obtained by a parabolic
interpolation, has not been deduced by analogy.

When dw/dv, rather than w, is given on the boundary, the same general equations
hold as before, but there is a different procedure for points adjacent to the boundary.
To write down the finite-difference equation at the point 0 (Fig. 3), we require
wa and wb- For wa, we draw the normal APE and use the approximation
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AE- (—) = WA- wE. (4)V dv Jp
A linear interplation along OG gives

OG'itj = OE'ios + EG wo,

and elimination of we between these two equations yields

OE OE (dw \
Wa = Wo H wo + AE ( ) .OG OG V dv Jp

Similarly, we obtain wb by drawing the normal BQF.
The normal can be terminated on any convenient line. Thus in Fig. 3 we could

produce AE to K on OD, to obtain Wa in terms of wo, wd, instead of wo, wg- The
shorter the normal, however, the more accurate is the
approximation (4), so in this case E is the best place
to stop the normal. On the other hand, the normal
from B is continued to F, because a termination on
the diagonal HO would involve the value wh, itself
fictitious, and the calculation would become more
cumbersome.

The approximations employed to date have as-
sumed w to be linear along any line near the bound-
ary. Improvements in accuracy can be made at the
cost of additional labour. Thus, if the normal is
stopped so that it is bisected by the boundary (Fig. 4), p
the formula

AC - ( \ = wA — wc (5)
\ dv )b

assumes a parabolic variation of w. The point C in general no longer lies on a diagonal
or mesh line, but its value can easily be found, by double interpolation, to the approxi-
mation of Eq. (5). This procedure yields a higher accuracy, but it is better, except
when a very high accuracy is required, to use a linear variation together with a finer
mesh.

3. Problem I. Let us find the function w, harmonic in the circle

x2 + y2 — 2x — 2y + 1 = 0,

and satisfying the boundary condition

dw y — x

dv x2 + y2
(6)

This is one of the problems attacked by Vaisey and Southwell [2: VIII]. It has the
exact solution

w = tan-1 y/x,
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whence we have a guide to the accuracy of our method. The solution is unique, except
for an arbitrary constant, and we choose the constant so that w=w/4 at the centre
of the circle.

First, we take the mesh-length equal to the radius of the circle. The mesh con-
tains only five points. Fig. 5 shows this mesh, the finite-difference, equations, and the
values of w multiplied by 1000. External mesh points are denoted by open circles.
For comparison, the exact values are entered under the approximate values.

When the mesh-length is halved, there are twelve fictitious mesh points and
thirteen simultaneous equations. The solution is given in Fig. 6.

2(5) + .5(2) + .5(4) - 3(1) - 733 = 0 (1)
2(5) + .5(1) + .5(3) - 3(2) + 733 = 0 (2)
2(5) + .5(2) + .5(4) - 3(3) + 2333 = 0 (3)
2(5) + .5(1) + .5(4) - 3(4) - 2333 = 0 (4)

(1) + (2) + (3) + (4) - 4(5) - 0 (5)

As the form of dw/dv indicates, w is skew-symmetrical about the line x=y. This
feature was not utilized in construction of Figs. 5 and 6, but it is found useful as a
labour-saving device in the case of a mesh-length of one-quarter of the radius. The

Fig. 6.
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results in this case are shown in Fig. 7, and are very close to those for the exact
solution, the error being greatest at points nearest the origin. This was to be expected,
since dw/dv changes rapidly in value across the line x=y when x2-\-y2 is small. Com-
parable errors were found in the treatment by Vaisey and Southwell.

Fig. 7.

An interesting point is the oscillatory nature of the convergence of values of w.
In the boundary-value-specified problem, values usually converge from one side
only.

4. Problem II. Let us find the function w, harmonic in the same circle as before,
but satisfying the boundary condition

(7)

where r = Vx2Jry2- The exact solution is again w = tan-1 y/x.
Here the boundary condition involves the value as well as the normal slope of
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the function, but only a slight extension of the method of the previous problem is
needed. As before, fictitious points are eliminated from the governing equation by
means of the boundary condition.

In order to write down the finite-difference equation
at 0 (Fig. 8), we need wA and wb■ As before, the normal AF
yields

/dw \
AF- ( ) = wA — wF,V di> Jq

and linear interpolation on OE and AF gives

OF • wf = OF ■ we + FE • wo,

Fig. 8. AF • wq = AP • wf + PF • wa■

From these three equations and the boundary condition (7), wa can be found in

Fig. 9.
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terms of Wo and We- A similar operation yields wb, and hence the finite-difference
equation for the point O can be written down, and the problem solved.

As in the previous problem it was found that decrease of the mesh-length results
in oscillatory convergence. The oscillation is rather more violent, but the final result
shown in Fig. 9 is no less accurate, notwithstanding the additional interpolation.

5. Summary. In this paper solutions are obtained of Laplace's equation with
boundary condition involving either the normal gradient only, or both the boundary
value and the, normal gradient. The need for a technique for problems of this kind
has arisen in recent developments of the relaxation method. Two problems are
solved, both have a known analytical solution, and good results are obtained in
each case. The method used is independent of the analogy of tensioned nets, and can
be applied without modification to problems for which analogies may be difficult to
use.
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