172 NOTES

In the other wave type, the plane of the magnetic ellipse is normal to the axis of bending; these waves are magnetically oriented $(MO_{m,n}$ wave type) and their fields are obtainable from E_{y} . In each case the order of Bessel functions is equal to the angular phase constant.

For a bent pipe formed by the intersection of two concentric spheres and two coaxial cones emerging from the center there is also a solution in terms of known functions. In one wave type, $EO_{m,n}$ type, the plane of the electric ellipse is normal to the radius; in the other, $MO_{m,n}$ type, the plane of the magnetic ellipse is normal to the radius. The fields of EO-waves are calculable from H_r and the fields of EO-waves from E_r ; H_r and E_r themselves can be expressed in terms of Bessel and Legendre functions. These waves may be called *spherically oriented* in order to distinguish them from the *plane oriented waves* described earlier. The letters E and E in front of EO and E0 may be conveniently used in the abbreviations.

CORRECTIONS TO MY PAPER

A STRAIN ENERGY DERIVATION OF THE TORSIONAL-FLEXURAL BUCKLING LOADS OF STRAIGHT COLUMNS OF THIN-WALLED OPEN SECTIONS

QUARTERLY OF APPLIED MATHEMATICS, 1, 341-345 (1944).

By

N. J. HOFF

In the last term of the right hand side member of Eq. (3) on page 343, n should be raised to the second power and not to the fourth power.

The following equation defining T should be added:

$$T = (1/\rho^2)(n^2R + GC).$$