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THE MATHEMATICS OF WEIR FORMS*
BY

ALLEN P. COWGILL
Syracuse University

1. Introduction. This paper aims at making more readily available the results of
a study of the mathematics o£ weir forms, a subject in Hydraulics to which higher
mathematics can be applied. Section 2 covers the general application of Abel's in-
tegral equation to the forms of weirs by Brenke.1 Section 3 deals with sectionally
analytic weir forms, particularly the Stout-Sutro weir. The writer believes he has
made the original application of Abel's integral equation to this corrected weir form.
Section 4 deals with cases when the quantity of flow can be expressed as a conver-
gent series.

2. Abel's integral equation. One method of solution of the problem of weir forms
involves Abel's integral equation. The natural conditions found in the flow of water
through weirs satisfy all the requirements of this integral equation, so it proves a
superior mathematical tool in handling the general problem. In 1922 Brenke studied
the problem of the weir form when the flow was proportional to some power of the
depth. He made the original application of Abel's integral equation. This equation
has the form

«■»-f'r~J a (X —

f(s)ds
(x - s)x

0 < X < 1 (1)

and its solution is, under certain conditions,

sin r x <t>'(s)ds
f{x) -  I 9 \ (2)

TV J a {X ~ S)1 X

To obtain (2) from (1) use is made of two fundamental formulas, namely2,3

dx— -f •sin Xir J , (z — »)1_x(x — s)x

<j>'(s)dx

0 < X < 1 (3)

r' r* <t>'(s)dx f" 1 r* <f>'(s)ds
J a Jm (z — x)1~X(x — s)X J a (z—x)I-XJa (x — s)X (4)

c/>(s) is assumed to be continuous and have a continuous derivative in the closed
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interval, a to b. Formula (4) is known as Dirichlet's generalized formula.4 Multiply (3)
by (f>'(s)ds and integrate from a to z, (a ^z^b), which gives

7T r , CZ C <t>'(s)dx
-——[*(»)-*(«)]=/ I   —— -ds. (5)
sin Xtt J a J s (3 — x)1 X(x — s)*

If (4) is applied to the right hand member of (5), we have

sin Xir f' 1 f 1 4>'(s)ds
<f>(z) - <f>(a) =  — I   — I   — dx. (6)

Then, if <p(a) =0 and if we replace the inner integral on the right of (6) by its value
from (2), we see that (6) becomes (1). Hence (2) is a solution of (1).

The weir is actually symmetrically constructed as in Fig. 3, but for purposes of
the present calculation a half section is used (Fig. 1). Letting y=f(x) express the

Fig. 1. Fig. 2.

distribution of width over depth, h the depth of flow, Cd the coefficient of discharge
(approximately 0.6), and assuming that the quantity of flow is proportional to the
wth power of the depth of stream, we have

Cd f [2g(h - x)]l'2/(x)dx = bhm, (7)
J 0

or, letting K = b/Cd(2g)112,

f.h
(h — x)inf(x)dx = Khm.

o

Differentiating with respect to h, we have

'k f{x)dxf•J Q (h - *)' /2
= 2 Krnhm~\ (8)

This equation has the form of Abel's integral equation.
To find the equation of the weir form when the flow is bhm, we have

4 W. A. Hurwitz, Note on certain iterated and multiple integrals, Annals of Math., 9, 183 (1907).



144 ALLEN P. COWGILL [Vol. II, No. 2

sin 7t/2 rx 2Km(m — 1 )hm~2sin 71-/2 rz
f(x) = — I

7T »/ o (x - h) 1/2
dh,

or

f(x) =   I   — dh. (9)
7T J 0 (x — A)1'2

By the use of Gamma Functions,6

2Xr(w + 1)
/(*) =       xm-3'2, m ^ 2. (10)

- §)

Let w be a positive integer ^ 2. Then the Gamma Functions become simple products
when m — n ox m = n-\-\. When m=n,

K 2"nl
f(x) = x" 3/2; n 2: 2. (11)

7T 13 5- • • • (2» - 3)

When m = n-\-\,
1-3-5- • • • (2»+ 1)

f(x) = K   — »->; n* 2. (12)
2"(» - 1)!

3. Sectionally analytic weir forms. When w is equal to or greater than \ one
gets continuous forms of weirs (Fig. 2). When m is greater than ^ and less than f the
weir forms have an infinite width at the bottom, the curve f(x) approaching the
X-axis asymptotically. As this is impossible in practice, the necessary correction due
to limiting the width of the weir furnishes an interesting mathematical problem which
has been studied in the case where m — 1.

Fig. 3. Copy of Stout's drawing in 1897. Fig. 4.

The weir in which the flow is proportional to the depth is of engineering value.
One of the first records of it is in an article by O. V. P. Stout.6 Approximate correction
was made by circular openings (Fig. 3). A weir of this type was also constructed by
Sutro and it is referred to in some texts as the Sutro weir. The modern way to correct

6 F. S. Woods, Advanced calculus, Ginn & Co., 1926, p. 164.
6 O. V. P. Stout, A new form of weir notch, Trans, of the Nebraska Engineering Society, 1, 13 (1897).
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the Stout-Sutro weir is to start with a rectangular cross section of depth a and
width w (Fig. 4). The upper section is then designed to give a flow proportional to
the first power of the depth when the depth of flow equals or exceeds a.

The calculations of E. A. Pratt7 by series solutions gave a mathematically correct
form of weir where hgia. In this solution a rectangular section of depth a and width
w is first assumed. Soundings are made with the zero point \a from the bottom,

Q = bH = b(h + fa).
The quantity of water discharged through the rectangular portion of the weir is

Qo = $wK[{h + a)3'2 - h3'2].

Therefore

Q = iwK[(h + a)"2 - A3'2] + 2K f (h — xy'2f{x)dx = b{h + fa).
J 0

As this equality must hold for h = 0, $wKa?l2 = \ab and b = 2wKa1,2t so

/J o
(h — x)ll2f(x)dx = fw[|Aa1/2 + «3/2 — (h + a)3'2 + h3'2].

Instead of solving by the use of series, as Pratt did, one may differentiate with
respect to h to put the equation in the form of Abel's integral equation; thus

f.h f(x)dx
 = 2 w[a1'2 — (h + a)1'2 + h112].

o {h — x)112

For the solution of Abel's integral equation the right hand member must be a con-
tinuous function, equal to zero when h = 0. These conditions being satisfied,

sin tt/2 r* [- §0 + a)-1'2 +
 dh

sin ir/2 r

w r r1 ^ cx ^
ir L J o \xh — A2]"2 J oo [ax + h{x — a) — h2]1/2

•ww a — x
= — H sin"1—■—, (13)

2 x a + x
or

2 w ^ / x \1/2
y — w tan_1( — ) . (14)

it \a,

This solution can also be written

tt(w — y)
x = a tan2   (15)

2 w

In the design of the Stout-Sutro weir it is now necessary to choose an a for sub-
stitution in the above formulas. One will generally know the average depth of flow

7 E. A. Pratt, Another proportional-flow weir, Sutro weir, Engr. News, 72, 462 (1914).
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expected through the weir. It is felt to be better to keep the curve of (13) as close to
the curve of the uncorrected weir derived from (10), y — 2Kx~ll2/ir, as possible. The
scheme is to make the rectangular section of the Stout-Sutro weir have the same
dimensions as if the uncorrected weir of (10) were corrected for the average depth of
flow by the addition of a rectangular section at the bottom, below the F-axis, to
compensate for limiting its width to 2w.

One substitutes y = w in the uncorrected formula (10) above and solves for x.
This value and that of the h assumed to be average are substituted in

h h — 2x 2 irh 2
— sin-1 1 — (h + 03/2 {hx- S2)1'2 (h - x)312 = 0,
2 h 3a:1,2 4 3*1'2

which is solved for r. One then makes a, the depth of the rectangular section, equal
to x~hr. It must be appreciated that (10) can be corrected for one depth of flow by
the addition of a rectangular opening at the bottom, but would not be correct at
any other depth of flow. Formula (13) is correct at any depth, H>%a (Fig. 4).

4. Series solutions of weir forms. We consider now the forms of weirs when the
quantity of flow can be expressed as a convergent series in powers of h. Assume
that the quantity of flow, Q{h), can be written

QW = £anh»+°, (16)
n=0

a convergent series not having a constant term, and assume the form of weir to be
given by

/(*) = £/»(*), (17)
n—0

each term of (17) giving rise to one term of (16).
The general equation is

Cd(2gy* f (h- xy2f(x)dx = <?(*)•
J 0

Its solution will involve a series of integral equations of the form

Cd(2g)1/2 f (h — x)ll2f„(x)dx = a„hn+a n = 0, 1, 2, • • • ; a > \
J o

which can be solved by the use of (10), giving

T(« + a

T(n + a - J)
r(» + a + 1)

/„(*)= Can—   xn+a-3/2i

where
2

C =
C„( 2g5r)1'2

Substitution of this in (17) gives the formal solution
n=* oo*-> r(w + a + 1)

/(*) = C Yl an ——  — z"+a-3'2. (19)
n=0 T(w + a — 2)
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The first term of this series
r(« + l)

Mx)=Ca0- (20)
T(a 2)

will be discontinuous at x = 0 if 5 <a<f and continuous if
The series formed by all the terms after the first will converge and represent a

continuous function of x. This may be proved as follows. By hypothesis the series
^2n-ianhn+c' converges since it is the series for Q(h), (16), with the first term
omitted. Let

r(» + a + 1)
671 > oc 2

r(n + a - J)
(n + a)(n + a — 1)F(« + a — 1)=     — , T(p + 1) = pT(p),

r {n + a — 5)

= [n + a)(w + <* — 1 )Cn

where c„' = r(«H-a — l)/r(»+a — 5) and 0 <c„' <1 since r(^>) increases monotoni-
cally for p> 1.46. Now8 if the series"a„A"+a converges, so also will the series

«=00 «=00 n=oo

23 Cn anhn+a, ]T nc„ anhn+a and w2c» anhn+a.
n=» 1 _ n=l n= 1

But the series ^2"Z?cnanhn+a is a simple combination of these three series, hence it
also converges. In each case the function represented by the series is continuous.

We have then the form of weir given by

/(*) = Mx) + g(x), (21)

where fo(x) is given by (20) and
71=00

g(x) = CX) cna„xn+a-312,
n= 1

the quantities a, C and cn being as specified above. The solution f(x) is discontinuous
at x = 0 if 5 <a <f. It is continuous for

8 F. S. Woods, Advanced calculus, Ginn & Co., 1926, p. 47.


