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ON COMBINED FLEXURE AND TORSION, AND THE
FLEXURAL BUCKLING OF A TWISTED BAR*
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1. Introduction. When a straight uniform slender bar is twisted, the straight
form becomes unstable at a certain value of the twisting couple, and the center line
of the bar becomes a space curve. Elements of the bar are bent about both principal
axes of section, and the buckled form thus possesses strain energy of flexure as well
as of torsion. If the bar is twisted to the critical configuration, and its end sections
then held against further rotation, the jump to the buckled form means the appear-
ance of flexural energy at the expense of the torsional energy. The occurrence of the
flexure must therefore produce some relief of the torsion, that is, it must modify the
amount of twist.

It proves to be impossible to account for the transference of strain energy from
that of torsion to that of flexure if the strain energy is represented in the accepted
form of the theory of small bending and torsion of thin bars—

1 r'
l J. (E,'U"+ Ehv"2 + GCP'2)dz,

where Eh, Eh, GC are the flexural and torsional rigidities, u, v the components of
deflection parallel to the principal axes of the section, and /3 the torsional rotation,
as functions of the axial co-ordinate z. Coincidence of shear center and centroid is
assumed, and secondary effects of non-uniform torsion1 are disregarded, for sim-
plicity. If for instance this form is used in the potential energy, and the differential
equations of the bar buckled from a state of simple torsion by couples M3 are found
by means of the theorem of stationary potential energy, the correct equations2

Ehu" + M3v' = 0, Ehv" - M3u' = 0, M3 = GC0'

are not obtained. The terms M3v', M3u' in the first two fail to appear. These equations
are nevertheless easily derived directly as conditions of equilibrium.

The comparison with the corresponding problem of the bar under thrust is useful.
The bar is compressed to the critical state, and the ends held against further ap-
proach. The bar jumps over to the bent form, and energy of bending appears. But

* Received March 24, 1944.
1 J. N. Goodier, (i) The buckling of compressed bars by torsion and flexure, Cornell University Engi-

neering Experiment Station, Bulletin 27, 1942; (ii) Flexural torsional buckling of bars of open section,
Bulletin 28, 1942.

2 S. Timoskenko, Theory of elastic stability, McGraw-Hill, 1936, p. 168, or (1) (ii) equations 2, 3, 7.
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the transition to the bent form involves a lengthening of the bar, and some of the
compressional strain energy is thus released to supply the energy of flexure. The
Euler problem has been analysed from this point of view by R. V. Southwell.3

This lengthening of the bar is of the second order in the derivative of the bending
displacement with respect to the axial coordinate. It can be disregarded in writing
down the differential equation of equilibrium, but not in energy methods. It is
natural to look for something analogous in the torsional problem by investigating
the nature of combined torsion and flexure to a higher order of small quantities than
formerly. This is done in what follows and the required new terms in the strain
energy are found. At the same time the nature of combined torsion and flexure is
clarified, and the energy method is made available for more difficult problems of
buckling from a twisted state such as those of non-uniform bars.

2. Finite bending and torsion of a thin bar. Let the axis (of centroids) of the
undeformed straight bai lie along the z-axis of fixed cartesian axes u, v, z. The bar is
now subjected to small bending and twisting. Its axis becomes a space curve, con-
sisting of points of co-ordinates u, v, z. Even if the deflection (w, ») is small, the
geometrical torsion of this curve is not small. The bending may be in one plane (the
osculating plane) at one point, and in a perpendicular plane at another.

The geometrical torsion tc of the curve is distinct from the torsion r of the bar.
When the deflection («, v) is prescribed the space curve of centroids is definite, with

definite curvature and torsion. The cross sec-
tions of the bar must be in the normal planes of
this curve, but the torsion of the bar remains
indefinite until the orientations of the principal
axes in these planes are specified.

In Fig. 1 the tangent, normal and binormal
at P are indicated by t, n, b.* As the origin of the
triad moves along the curve with unit speed, it
has a component rc of angular velocity about t,

Fjg j and a component k (the curvature) about b,
right handed rotations looking along the posi-

tive axes being reckoned positive. Define an angle y such that Tc=dy/ds (s being arc
length increasing in the sense of t) and 7 = 0 at some chosen reference section s=s0,
as for instance one end of the bar.

Let / be the angle which one principal axis p (Fig. 1) of the cross section at P
makes with the principal normal n, positive when this axis is obtained from n by
positive rotation about t. Let /0 be its value at 5 =s0- Then the rate of rotation of the
/^g-triad about t is given by rc+df/ds or (dy/ds) + (df/ds) and this is by definition
the torsion of the bar.6

Accordingly if the bar is bent but not twisted, 7+/ is a constant along the bar
and in fact 7+/==/o. or/=/0—7. From this state we may derive a twisted form of the

8 Introduction to the theory of elasticity, 2nd ed., Oxford University Press, 1941, p. 443.
4 The notation and conventions are those of C. E. Weatherburn, Differential geometry, vol. 1,

Cambridge University Press, Cambridge 1939, p. 15.
6 The discussion thus far, except for the introduction of the angle 7, corresponds with that of A. E. H.

Love, Mathematical theory of elasticity, 4th ed., Cambridge University Press, 1934, Ch. XVIII. The
further development is different.
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bent bar by introducing an angle of twist <j> with! 0 = 0 at s = s0, so that f=fo~7+<£-
The torsion of the bar is now d(f)/ds. The bent and twisted form of the bar is com-
pletely specified by the curve of centroids, which defines y, and the angle/o+</> which
can be assigned independently.

In the elementary theory of bending, the curvature is related to the bending
moments by means of components along the principal axes of cross sections. If K\, K2
denote these components along p and q (Fig. 1), we have (k can be regarded as an
angular velocity about b)

Ki — K sin /, Kl = K cos / (1)

or

ki = k sin (/o — y + 4>), k2 = k cos (/0 — y + <t>). (2)

VVe have also

r = d<t>/ds. (3)
But

k = («"2 + v"2 + z"2)1'2, (4)

primes denoting differentiation with respect to s. Also y is defined through dy/ds=rc
and we have

v! v' z'

u v z
..III ../// „tf/U V z

(5)

With these formulas the bending and torsion of the bar are completely specified by
the deflection (u, v as given functions of z) and the angles/o and <f>. The orientations
of the principal normal and binormal are defined by the deflection curve, and the
orientations of the principal axes relative to these are defined by /0 and <j>. The
formulas (2) and (3) may be used to specify not only the deformed state of the bar,
but also an initial "bent and twisted" but unstressed state. The differences between
the values of k2 and r then represent the changes of curvature and torsion to
which the components of bending moment, and the twisting moment, will be respec-
tively proportional.

To illustrate this, and also the significance of f0, let the bar be circular and in a
horizontal plane, with the principal axis p of all cross sections also in the horizontal
plane. Then we may take for the initial state y=f0=<j> = T = Ki = 0, K2 = K = l/r where
r is the radius of the circle. Let each cross section now be rotated by the same angle
a about I. For the deformed state /0 = a and

ki = sin a, k2 = r_1 cos a, r = 0.

The changes of the components of curvature are

r~l sin a, r_1(cos « — 1).

When a is small, the second, the change in k2, is negligible. The bending moment
induced is proportional to r~1a, and corresponds to Ki, that is, its axis is n, in the
plane of the ring.6

6 This problem is analysed from first principles in Timoshenko, Strength of materials, Part II, 2nd ed.,
Van Nostrand, 1941, p. 177.
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3. Small bending and torsion of a straight bar. The formulas (2) and (3) must
yield such expressions as d-u/dz2, d2v/dz2, d<j>/dz as their principal parts for small
deformation. The object of the present investigation is to obtain terms of higher
order as well.

Let u', v', <j> be small compared with 1, and let I be a suitable length such as the
length of the bar, or the wavelength of a periodic deflection. The formulas (4) and (5)
involve uv", u'", v'". If the greatest absolute value of uand v'" is denoted
by rj/l2, u" and v" do not exceed tj/l and u', v' do not exceed rj, which is small. Let
e denote the largest absolute value of rj and <j>. Quantities not exceeding «, e/l, etc., or
quantities differing from them only by terms involving higher powers of «, will be
denoted by 0(e), 0(e/l), etc.

The relation m'2+i/'2+z'2 = 1 yields s'2 = l—0(e2) and so z'=l— 0(e2). It yields
also

z" = - (u'u" + »V')(1 - u'2 - t>'2)"1/2 = 0(e2//) (6)

and
z"' = 0(e2/l2). (7)

Then (4) yields k= [m"2+!)"2 + 0(64//2)]1/2. Since u"2, v"2 are 0(e2//2) we have as an
approximation

K = (m"2 + I'"2)1/2 (8)

in which the error is of order e2, relative to the part retained.
The determinant of (5) yields u"v"' — u"'v" with an error of order e2. Then (5)

becomes
tc = («"»"' - u!"v")(u"2 + v"2)-1 (9)

with an error or order e2.
Now the right of (9) may be identified as (d/ds) tan-1 (v"/u") and, in view of the

equations defining 7 (dy/ds =tc, 7 = 0 when s = So) we have

v" v0"
7 = tan"1 — - tan-1 — , (10)

U M0

where m0", fo" are the values of u", v" at i=50. The inverse tangents are principal
values. The values of sin 7 and cos 7 are required. From (10)

tan 7 = (mo'V — »o"w")(tto"w" + »o v")"1

and therefore

(v" Vo'\

\ uo'u")
cos 7

/ Vo 2 \-1/2/ v"2^1'2
x('+^) (1+^) (11)

The ambiguity of sign involved in obtaining the sine and cosine from the tangent is
disposed of by the consideration that if v"/u" slightly exceeds v"/ul', both being
positive, 7 must be a small positive angle.

4. Expressions for small curvature and torsion. Expanding the first of (2) in the
form
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K\ = K-|(sin /o cos 7 — cos /0 sin 7) ^1 2" )

+ (cos /o cos 7 + sin /0 sin 7) ^</> — ~

and substituting for k, cos 7, sin 7 from (8), (11) we find

ki = u" sin (/o + 8) — 0" cos (/0 + 5) + <t> [u" cos (/o + 5) + »" sin (/0 + 5) ] + ■ • • (12)

and similarly

*2 =•«" cos (/o + 5) + v" sin (/0 + 5) — <#> [u" sin (/0 + 5) — v" cos (/o + 5) ] + ■ • • (13)

where cos 8 = u" (uin +z'o"2)~1/2, sin 5 =v" (m0"2 +fo 2)~1/2. In these developments
the errors are of order e2 relative to the leading terms. They are therefore accurate
as far as explicitly carried.

Since dz/ds = 1 — 0(e2), replacement of differentiation with respect to s by differ-
entiation with respect to z, to any order, will involve errors of order e2. Thus the
primes in the terms set out in (12) and (13) may be taken to indicate differentiation
with respect to z, and the developments remain correct to this order. In the same
way the torsion d<f>/ds may be replaced by d4>/dz with an error of order e2.

The angle fo, while significant of course when the axis of the bar is appreciably
deflected, tends to become merely a rigid body rotation when the bar is nearly
straight. In order to eliminate such a rigid-body rotation, we observe that there is
as yet no connection between the w-axis and the principal axis p. If these axes coincide
when the bar is undeformed, small torsion and bending, free of large rigid body rota-
tions, will restrict the angle between them to be of the same order as <t>. Then the direc-
tion cosines of p, relative to the u, v, z axes must be 1—0(e2), 0(e), 0(e) at most.

The direction cosines of «, the principal normal, are u"/k, v"/k, z"/k so that, if n
is the unit vector along n, i,j, and k unit vectors along the axes of u, v and 2,

n = K-l{u"i + v"j + z"k).

The direction cosines of b, the binormal, are used as the coefficients of i, j, k in

b = k_1[(®'z" ~ z'v")i + (z'u" — u'z")j + (u'v" — v'u")k]

where b is the unit vector along the binormal.
Since the principal axis p (Fig. 1) is in the plane of b and n, and is derived from n

by a rotation / towards b, the unit vector along it is given by n cos f+b sin / or

k~1[u" cos / + (v'z" — z'v") sin/]/

+ K-1[y cos / + (z'u" — u'z") sin/]/ (14)

+ k_1[z" cos / + (u'v" — v'u") sin/]/c

and the coefficients of i, j, k give the direction cosines of p.
The first of these is of order 1 without restriction on/. The second may be repre-

sented as

0(1/1) 0(t/l) cos / + 0(l)0(e//) sin / — 0(t)0(t-/l) sin /J ,
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from which it is apparent that these direction cosines will not be small of order e unless

k'(v" cos / + u" sin /)

is small of this order. This expression may be developed, by the processes which led
to (12) and (13) as

k~V {u" cos (Jo + 5) -f v" sin (/0 + 5) — tf> [u" sin (/0 -f 5) — v" cos (/o + 6) ] + • • • }

+ k~2u" {u" sin(/0 + 6) — v" cos (/0 + 5) + <t> [«" cos (/o + 5) + v" sin (/o +5) ] + • ■ • }

and will be small of order e only if/0 + 5 is small of this order.
This result simplifies (12) and (13) to

Kl = — v" + + /o + 8), «2 = u" + v"(<l> + /o + 5), (15)

and with r = <f>' these constitute approximations to Ki, k2, and r with errors of order e2
relative to the leading terms. It is now implied of course that one principal axis (p)
coincides with the w-axis in the undeformed state, and that in the deformation it ro-
tates from it by an angle of the same order as u', v' and </>. This is the case if one sec-
tion of the bar is fixed against rotation, or against rotation of the type <j> only.

The third direction cosine in (14) is of order e without further conditions.
5. An alternative torsional co-ordinate. The angle <f> represents a rotation of the

cross section about t, from the torsionless configuration associated with the deflec-
tion u, v. This torsionless state is far from being geometrically obvious, and the
terminal values of 0 and / corresponding to various types of simple end constraints
are not immediately obtainable.

A representation of the torsion and flexure to the second order which does not
suffer from these disadvantages is desirable. A straight bar (initially along the z-axis,

Fig. 2) may be imagined brought to a bent
and twisted state by supposing it cut into
thin discs. Let a typical disc be translated
without rotation so that its centroid is
brought to its final position P on the de-
flected curve and the principal axes ^re
brought to xi, yi parallel to x, y. It must
now be rotated so that the tangent at P to
the deflection curve is normal to it, in accord-
ance with the theory of flexure of thin bars.
Let this rotation consist of a rotation about yi

Fig. 2. bringing Xi to x2 in the normal plane at P, fol-
lowed by a rotation about x2 bringing yx to y<i

in the normal plane. The configuration so produced is evidently a possible state of
bending and torsion. The principal axis x2 is still parallel to the plane xz. This configu-
ration is to be used as a reference from which to measure the torsional rotation of cross
sections. To the first order the torsion is zero, but to the second order it is not.

To determine its value, let the x, y axes in Fig. 2 correspond with the u, v axes,
and let x2 be the principal axis p. Then, in the proposed configuration, p is everywhere
normal to the y, or v, axis. Thus the coefficient of jin (14), which represents the direc-
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tion cosine of p with the v axis, must vanish, so that the value of / is determined by
the equation

v"
fi = tan"1  — • (16)

u'z" — z'u"

The torsion of the bar is Tc-\-dfi/ds, tc being given by (5), and is thus expressed in
terms of the derivatives of u and v. When expanded in powers of these derivatives
its leading term is u"v'. This is an approximation to the torsion with error of order e.
Thus if </>i is the value of 0 corresponding to this configuration 0/ = w'V[l+0(e)].
Also, fo is obtained from (16) by putting u0, v0 for u, v and it is easily found that
tan /0 = — (vo' /uj )+<9(«2). Since tan 5=t>0' /wo" it follows that/0 + 5 = O(€2). This
being so/0 + 5 in (15) ceases, for this particular configuration, to be significant, since
its products with u", v" are of the order of the terms neglected.

Now consider an arbitrary state of (small) flexure and torsion specified by u, v, 0.
It may be derived from the reference state just defined simply by rotating cross-
sections about t in order to convert 0i to 0. Let be the amount of such rotation. Then
0—01=/3, and r =0' = /3'+0i', that is

r = (3' + u"v' (17)
with error of order e2.

Let 5 now be measured from one end of the bar so that s0 = 0. Then 01 like 0 is
zero at s = 0 and 01= f0u"v'ds. Thus <}>=l3+f'0u"v'ds and the integral is of order e2.
Moreover/0+5 is not altered by the rotation /3 so that it is still of order e2. The first
of (15) becomes in consequence

Kl = - v" + u' ' (fi + J' u"v'ds^J.

The first term is or order e/l, u"/3 is of order t2// and u"f0u"v'ds is of order t3/l.
Therefore, with an error of order e2 the new formulas for the components of curvature
are

ki = - v" + /3m", k2 = u" + &v". (18)

These with (17) give an alternative representation of the torsion and flexure, con-
venient because/o and 5 have been eliminated, and /3 is relatively easily envisaged-
being the angle by which the cross section must be rotated, about the deflected, tan-
gent, to bring p from the position parallel to the axial plane in which it originally
lies, to its final position. At fixed ends 13 is clearly zero.

6. Energy considerations. The strain energy is given by

1 r 1— {EI A
2 J q

+ EI2K\+GCr2)dz. (19)

The integration with respect to s rather than s will involve an error of order «2.
Consider now the problem referred to in the introduction—the straight bar twisted

until it buckles. Let the state just prior to buckling be

/3 = B, u = 0, v = 0,

and after buckling
13 = B + Pi, u = Mi, v = Hi.
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Then B is small in the sense of <j> in the preceding analysis. But ft, U\, Vi are to be
true infinitesimals, since we seek a buckled form which comes to the straight form as
a limit. Thus they are to approach zero after a fixed value has been assigned to B.

The expressions (17) and (18) are now used in (19), and terms to the second order
in «i, i>i, ft and their derivatives, without regard to B, are retained. The result is

— J [£/i(«i"2 + IBui'vl') + Eh(vr2 - 2Bu{'vC)
+ GC(B'2 + 2 B'pl + ft'2 + 2 Bu{'vi)]dz. (20)

Let M3 be the critical torsional couple GCB'. On buckling, some work is done by
this couple, but exactly how much, in terms of ft, Mi, Vi depends on the end constraints
of the bar.

If the ends are in bearings which constrain the axis of the bar to remain fixed in
direction at the ends—i.e., the ends are "built-in" with respect to flexure—the rotation
of one end may be set as zero, and that of the other about the axis is then the value of
ft at that end. The potential energy of M3 in the buckled form is — Mzf^fildz referred
to the twisted but unbuckled form as zero. The total potential energy is thus this
term together with (20), omitting %f0GCBll2dz which is the energy of the unbuckled
twisted form.

If the potential energy is now varied by varying Ui to Wi + eiiji(z) the coefficient
of ei in the variation of the potential energy is

f [- EhBvl' + EI\(u{ + Bvl') + GCB'vl }v{dz
J 0

and this must vanish if the buckled state is a possible state of equilibrium. Since
Bvl' is small compared with ul', on account of the smallness of B, the conclusion
is that the equation

EI ml' + M3vl =0 (21)

must be satisfied. Similarly variation of vi yields

Ehvl' - Mtul = 0. (22)

Variation of ft yields GCB'+GC/31 — M3 = 0, that is ft' =0. Equations (21) and
'22) are identical with the equations obtainable by direct equilibrium considerations.
They are derived in this manner here in order to show that the terms M»vl, — M3u{
irise from terms in the strain energy of torsion which are of higher order than the
;erm %f0GC(3'2dz hitherto accepted. It is to be expected therefore that in (17) and (18)
:he terms of the second order will be required in energy calculations in other prob-
ems where torsional loads cause, or contribute to, buckling.

When the equilibrium of the straight twisted form is neutral, the work done by M»
luring buckling is equal to the gain of strain energy. Then

M3 f pldz = — f [EhCul" + 2Bu{'v[') + £/2(®i"2 - 2Bul'vl')
J o 2 J o

+ GC(2B'fi{ + ft'2 + 2 B'ul'v{)]dz. (23)
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The term Bu{' v{' in the flexural terms is small compared with u['2 or v"2 and will be
dropped. Introducing M3 = GCB' the resulting equation yields

1 + Ehvl'1 + GCf3{i)dz / x
M3 = — 77 (24)

2 f0u{'vl dz

Now equations (21), (22) (after one differentiation) together with ft' =0 are the
Euler differential equations for the functions u^, vi, ft making the right of (24) a
minimum. Since ft' =0 the term GCft'2 in the numerator of (24) may be dropped.
The critical M3 is the least value of the right of (24) with or without this term. With-
out it the equation may be interpreted as showing that the energy of flexure which
appears when buckling occurs is accounted for by a decrease of torsional energy of
amount M3Jau{'v(dz.

The same equation is suitable for the approximate determination of the critical
torque by the Rayleigh method—assuming simple plausible forms for wi and Vi and
adjusting the parameters of these forms to obtain a least value of M3. This method
is applicable to non-uniform bars.

Equation (23) would in general require modification if the ends are not "built-in,"
for instance if they are attached to Hooke's joints. For then the work of M3 is not
done merely on a rotation /0ft' dz. Certain terms of higher order must be added to ft',
and these can be of the same order as u{'v{. Such terms would be significant in (24).
Nevertheless (24) is appropriate in the Rayleigh method whatever the end con-
straints, for its minimizing conditions are the differential equations of equilibrium
which must be satisfied irrespective of end constraints.

There are expressions other than the right of (24) which yield the critical M% as
a minimum value. If (21) and (22) are multiplied respectively by u{', v{', integrated
along the bar, and added, the result yields another in the form

JljEhul'* + EhK'*)dz
/„'(«! »j" — v{u{')dz


