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{ [a0]2a_1 + [|30]2&~l + • • • J |a[0]2a-2 + [/30]2ft-2 + • • ■ }~1/2

= { [«0]2 + [/SO]2 H- • - - }1/2, (19)

and this is satisfied when the factors a, b, c, ■ • ■ are all equal. Without loss of gen-
erality, they may be taken equal to unity. For this weighting system, the formation
of the damped normal equations (10) may be thought of as being accomplished simply
by the addition of a positive constant, 1 /w, to the coefficients of the principal diagonal
of the standard normal equations (5). Another weighting system which has been used
successfully is, a = \aa ], b=m, ■ ■ • ; in this case the damped normal equations
are formed by multiplying the principal diagonal coefficients of the standard normal
equations by a constant greater than unity, 1 + 1 /w.

The nature of the damping which we have imposed upon the parameter variables
can be given a simple geometric interpretation. For instance, if the unity weighting
system is considered, the "overshooting" of the solution is prevented by damping the
distance (k dimensional) from the initial solution point, since Q is then the square
of this distance. By this restriction of k dimensional distance (which would appear
to be a natural way to prevent overshooting), we are not obliged to decide on an ar-
bitrary preassigned procedure restricting the variables individually, as is done, for
example, by the method of Cauchy (I.e.). The greater freedom given the individual
variables by the method of damped least squares may account for the fact that it
has solved, with a comparatively rapid rate of convergence, types of problems which
are of much greater complexity than those to which the principle of least squares is
ordinarilv applied.

ON THE DEFLECTION OF A CANTILEVER BEAM*
By H. J. BARTEN (Washington Navy Yard)

In spring theory it is sometimes necessary to compute the deflection of a cantilever
beam for which the squares of the first derivatives cannot be neglected as is done in
classical beam theory. This problem is thus placed in the same category as the prob-
lem of the elastica.

The solution given in this note can be applied to a cantilever of any stiffness. The
difference between the deflection as found by the classical beam theory and that
found by the present method is, however, noticeable only in the case of beams of
low stiffness.

The clamped end of the beam is taken as the origin of coordinates and downward
deflections are considered as positive. A point on the beam may be identified by four
quantities of which only one is independent. These four quantities are the two rec-
tangular coordinates x and y, the arc length j measured from the origin of coordinates,
and the deflection angle 6 which is the angle between the tangent to the curve at the
point under discussion and the horizontal. We may thus identify this point by the
symbol (x, y, s, 0). The subscript L is used to identify the value of these quantities
at the free end of the beam. Before deflection a vertical load P is applied at the point
(L, 0, L, 0). The beam has a uniform cross section of moment of inertia I and is com-
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posed of a material whose modulus of elasticity is E. The problem is to find the de-
flection of the end-point of the beam due to the vertical load P.

The bending moment induced at the point (x, y, s, 9) by the vertical load P is

M = P(xl, — x).

Therefore
dd/ds = ci(xl — x), (1)

where a — P/EI. Using the relation

dd dd dx dd

we obtain

— = = cos 0 — >
ds dx ds dx

J' cos 6 dd = j" a(xL — x)dx

sin 6 = o(xlx — \x2) + C. (2)

The boundary condition at the clamped end of the beam, namely, 6 = 0 when x = 0,
reduces Eq. (2) to

sin 6 = o,(xlX — %x2). (3)

or

Thus
sin 0£ = \ax\. (4)

Combining the latter expression and Eq. (3) we obtain

sin 6l — sin 6 = \a{xL — x)2. (5)

Thus
xl — x = [2o_1 (sin 6l — sin 0)]1/2.

Substituting this expression into Eq. (1), we obtain

dd dd dy d6 r n
— = — = sin 6 — = [2a (sin Ol — sin 0)]1/2,
ds dy ds dy

or
sin 6 dd

Therefore

With the transformation

= r 
Jo [2a(sin Ol — sin 0)]l/2

/'sin 0 dd
n [2a(sin dr — sin 0)11/2 ^

cos I
/ 7T d \ / 7T dL\
I ) = cos I ) sin d> = k sin <£,
V 4 2/ V 4 2/

Eq. (6) becomes
r 1/2 (2^2 sin2 4> — l)d(j>

yL = a,-112 I    —, (7)
J i (1-^sin2^)1'2 W

where
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costt/4
sin <5 =  j k = cos

(t-t>

Eq. (7) is a combination of incomplete and complete elliptic integrals1 and may be
written

Vl = arin[F{k) - F(k, 8) - 2E{k) + 2E(k, 5)], (8)

where F(k) and E(k) are the first and second complete elliptic integrals respectively
and F(k, 5) and E(k, S) are the first and second incomplete elliptic integrals respec-
tively.

As Eq. (8) stands it is useless unless we find 9l as a function of a and L. This rela-
tionship may be obtained in the following manner. From Eq. (1) we get

&l = I a(xL — x)ds.
J o

Integrating by parts we obtain

L /7 t t* L/%xl rL dx rL
as dx = | as — ds — I as cos 6 ds.

o J o ds J o

Differentiating this latter integral with respect to its upper limit, we have

ddL/dL = aL cos dL-

The solution to this differential equation is

aU
sin 6l = tanh   (9)

2

This completes the solution to the problem.
In order to compare our results with those of Gross and Lehr2 we must express

our solution in the same dimensionless factors that they employed. By dividing the
actual deflection of the beam by the "small deflection" aL3/3 they obtain a deflection
factor which is a function of the dimensionless quantity aL2. We shall call this deflec-
tion factor Fv. Thus, from Eq. (8)

3 vl r ,
Fv =   = 3(aZ,2)-3'2[F(/fe) - F(k, d) - 2E{k) + 2E(k, 5)]. (10)

aL3

In order to find the maximum bending stress at the clamped end of the beam we
must know the length of the moment arm xl- Combining Eqs. (4) and (9) we find that

2 2 aL2
xl = — tanh   (11)

a 2

Gross and Lehr use the dimensionless contraction factor xl/L an an aid in find-
ing xl- We shall define this factor as Fx. Thus

1 Jahnke and Emde, Funktionentafeln mit Formeln und Kurven, Dover Publications, 1943.
2 Gross and Lehr, Die Federn, V.*D. I. Verlag, 1938.
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2 aL-
Fi ■■ tanh   (12)

aL2 2

Computations show that Gross and Lehr's values of Fy have a constantly increas-
ing error which deviates about 4% from our results when aL2 = 1.
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Fig. 1.

The two factors Fx and Fv are very important to the designer. For this reason
curves of these two factors with aL2 as the independent variable are given in Fig. 1.
The values of Fy were computed from Jahnke and Emde.

ON WAVES IN BENT PIPES*
By S. A. SCHELKUNOFF (Bell Telephone Laboratories)

In a recent issue of this Quarterly,1 Karlem Riess obtained expressions for the
fields of electromagnetic waves in bent pipes of rectangular cross section by the
perturbation method. While it is true that in a bent pipe the waves cannot be classi-
fied into transverse electric and transverse magnetic types because in general both
E and H have components in the direction of wave propagation, a different classifica-
tion into two types is possible. This permits another method which yields the general
solution in terms of Bessel functions.

In the one wave type, the plane of the electric ellipse is normal to the axis of
bending (the F-axis in Figure 1, p. 329 of Riess' paper); these waves have been called
electrically oriented (EOm,n wave type) and the fields of these waves are obtainable from
Hy which may be expressed as the product of Bessel and sine (or cosine) functions.

* Received Feb. 18, 1944.
'Vol. 1, No. 4, pp. 328-333.


