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MEMBRANE STRESSES IN SHELLS OF CONSTANT SLOPE*
BY

VLADIMIR MORKOVIN1
Brown University

1. A surface S of constant slope may be generated by a straight line L sliding
along a plane curve Co (say, in the xy plane), maintaining a right angle with the tan-
gent to Co and a constant angle d with its binormal (i.e., with the z axis). When a
closed curve C0 is chosen, the surface is an obvious generalization of a circular cone2

7 (see Fig. 1). Since "near-conical" shells occur
often in practice,3 it may be of interest to dis-
cuss such effects as fall within the scope of the

\ membrane theory of shells.
\ We introduce the following notations:
\ i, j, k, unit vectors in fixed rectangular
\ directions x, y, z;
\ X, p, v, unit tangent, normal, and binor-
\ mal of curve Co;
a t, length along generators L;

vA st, pi, arc length and radius of curva-
' \ ture of a horizontal section Ct of

\ the surface S; subscripts 0 and
\ 1 will designate corresponding
\ quantities in the end sections C0
\ and Ci of the shell;

_ f = f(s0), vector equation of curve Co;
J   \ l <p, angle between the positive x axis

„ ^ v )„ and the outward normal of C0;
K E, v, G, Young's modulus, Poisson's ratio,

^— L 0 and shear modulus;
/S h, thickness of shell having the sur-

A face S for middle surface;
Fig. 1. Ns, Nt, normal forces per unit length of

sections of the shell which are per-
pendicular to s- and /-directions respectively (Fig. 3);

N,t, shearing force in s-direction per unit length of shell section perpendicular
to /-direction;

* Received Oct. 16, 1943.
1 The author wishes to express his appreciation to Professor W. Prager for proposing the problem

and for other valuable suggestions.
2 Non-circular cones (for which the generators meet in one point while their "slope" varies) have

been considered recently by A. Pfltiger, Z. angew. Math. Mech. 22, 99-116 (1942).
3 The fuselages of some aeroplanes, for instance, can be approximated by one or several shells of

different slopes connected by stiff bulkheads. The construction of models is relatively simple because each
portion forms a developable surface.
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e.«, elt, est, strains corresponding to NSI Nt, and Nst, respectively.
We note some simple relationships:

df
— =X; V=k- (1.1)
as o

A = — i sin <p + j cos ip; p = — i cos ip — j sin <p. (1.2)

Since po=dso/d<p, we obtain from (1.2) the Frenet-Serret formulae for a plane
curve:

d\/ds o = /Z/pol dp/dso = — X/po. (1-3)

The vector equation of the surface of constant slope 5 has the form:

R(so, t) = f(j0) + t(ji sin 6 + v cos 6). (1.4)

For a constant value of t, (1.4) is the vector equation of the horizontal section Ct.
Then, dR/dst is the unit vector tangent to Ct- Since dR/dst^Xipo — t sin d)dsa/pvdst,
Ct is parallel to Co at corresponding points (see Fig. 2), and

dst/dso = (po — t sin 0)/po. (1-5)

Fig. 2.

Hence, for corresponding points, the centers of curvature of Co and Ct coincide, and

Pt = po — t sin 6. (1.6)

If the shell is long, it may happen that at some point pi = 0. At such a point the tan-
gent to Ct ceases to turn continuously (see points P, P' in Fig. 2). We shall discuss
only the portion of the shell where t sin 6<p0, i.e., the open shell without the "tail
edge."

2. An element of a shell of thickness h having the surface 5 for middle surface is
shown in Fig. 3. According to the usual assumptions of the membrane theory of
shells,4 the bending stresses as well as effects of curvature of 5 are disregarded and

4 See for instance S. P. Timoshenko, Theory of plates and shells, McGraw-Hill Co., New York, 1940,
p. 356; also the first chapter of W. Fliigge's Statik und Dynamik der Schalen, J. Springer, Berlin, 1934.
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one has Ngt — Nlt. The total forces acting on the faces hdst and hdt of the element are
respectively:

— {Nt(ji sin 0 + V cos 0) + iV,iX}(po — t sin 8)dip, (2.1a)

- {N.% + N,,(/z sin 0 + V cos 0)} dt. (2. lb)

Let P = P,%+Pt (p sin 0+v cos 0)-\-Pn(fi cos 9 — v sin 6) represent the load per unit
area of the surface. Then the condition of equilibrium of the element of the shell is:

— { sin 0 + V cos 8) + iV,iX](po — /-sin 0) }dtdtp
dt

Q
H {N,\ + sin 0 + V cos 0)} dtdip = (p0 — / sin 8) P dtdip. (2.2)

dip
Equating the components of these forces in the n, s, and t directions, we obtain three
equations for the determination of the three stress components:

N, = (p0 — t sin 6)Pn sec 0,
d . , dN,

— 1 N,t(pa — t sin 8) —N,t sin 6 = (p0 — t sin 8)P, >
dt dtp (2.3)
a . . dN„

— {A7i(po — t sin 6)! = b (po — t sin 8)Pt —N, sin 8.
dt dip

We proceed to solve equations (2.3) with the simplifying assumption that the load 7
does not vary along the generators L, and obtain :6

AT. = (po — t sin 8)P„ sec 8,

Hip) sin 8
N.t = J csc 0(po — t sin 8){P, — Psec 8) + Jp0' Pn esc 6 sec 8,

(po - t sin 8)2

-1 r /O) YNt = — JKJ -gM\ (2.4)
Po — t sin 8 Lpo — t sin 8 J

t csc 8 .
H ;— [^Pc P. — fpo Pn sec 8 — \p"Pn sec 8]

Po — t sin 8

— 5 csc 8(po — t sin 8) \Pt — P„ tan 6 — \P" csc 8 sec 8 + \P', csc fl],

where f(<p) and g{(p) are arbitrary functions of <p and the prime denotes differentia-
tion with respect to tp. If the curve Co is closed the continuity of stresses demands
that/ and g' have a period of 2ir.

When the load on the shell is applied only through the end sections Co and Ci the
stress system becomes:

/ sin 8 — 1 T / Y
N, = 0; N.t =    ; Nt =   J— g . (2.5)

(po — t sin #)2 (p0 — t sin 8) Lpo — t sin 8 J

Substituting (2.5) into (2.1a) and integrating between 0 and 2-ir, we obtain the re-
sultant force Ft acting on the section Ct\ the expression for Ft simplifies readily by
virtue of (1.2):

5 In the case of cylindrical surfaces, 6 = 0 and integration of (2.3) leads to the special solution:
N.=pP„; N„=f(s)+t(LP.-dN./ds); Nt=g(s) — tdj/ds +lP,+t>/2(d'N./ds'-dP./ds); where/(s) and g{s)
are arbitrary functions of the arc length s. In this connection see pp. 66-76 of Fltigge's book.
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Ft = f / — [" ^—7—- (p sin 6 + v cos 0)1 + g'(& sin 0 + V cos 0)1 dtp
■J a v Lpo — t sin 0 J )

= — sin 0 g' cos <pd<p+j J g' sin <p d<p^ + k cos 0 {g(2ir) — g(0)}. (2.6)

The resultant moment Mt about the origin due to the forces on the section Ct is
found similarly:

M, = f R X / — I"   (m sin 0 + V cos 0)1 + g'(fl sin 0 + V cos 0)1^-
^0 I Lpo — /sin0 J )

It follows by integration by parts that

/> 2t /% 2rfd<p + cos 0 I (i cos v + j sin <p)f dtp
0 J 0

— J" X X ^ J" g'(fi sin 0 + V cos 0)J<pj- (p0 — t sin 6)d<p. (2.7)

The results (2.6) and (2.7) will form the basis of analysis in later sections.
3. Let the vector of infinitesimal displacement be

D = mX + ®(m sin 0 + v cos 0) + w(/z cos 0 — V sin 0). (3.1)

The strains in the surface are given by the following scalar products between the rates
of change of the displacement D and the unit vectors in the t and J directions:

dR dD
etl = —

dt
dD dR dD (dR dD dR dD)

 > e„ = > e,t = < 1 > . (3.2)
dt dst dst l dst dt dt dst '

We evaluate (3.2) and substitute the results into Hooke's Law:

1 , . dv
  =— 1

Eh dt
1 , » 1

 {N, — vNt} = {u' — (v sin 0 + w cos 6)}, (3.3)
Eh Po — t sin 0
2(1 + '».* If du s )

,t = < (p0 — t sin 0) 1- u sin 0 + v' > .
Po — t sin 0 (. dt )Eh

Equations (3.3) are easily integrated to yield expressions for the displacements:

1 r'
v = -— I (N, — vN,)dt + A(<p),

Eh JEh
2(i + v) r> Ntl

u = (po — t sin 0) I  dt
Eh J Po — / sin 0

(3 4)
(p0 — / sin 0) r'f'(NI -vNl)dt

 I  dt — A'(<p) csc 0 + (po — t sin Q)B(<p),
Eh J (po — t sin 0)2

1
w = u' sec 0 + v tan 0 (p0 — t sin 0)(N, — vNt) sec 0,

Eh



(3.5)
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where A{<p) and B(<p) are arbitrary functions. When the stresses have the form (2.5),
the displacements can be expressed directly in terms of the functions / and g:

csc 6 . .
K = — - f'pT1 + l/p'pf2 - g' In p.} + A,Eh

csc2 6
u = {(l + v)f pr1 sin2 e + hf'pT1 - i(/p" + 3/V)pr2 + i/p'2pr3Eh

+ ig'p'pT1 + g*(ln pi + 1)} — A' csc 8 + P/B,
see 6 csc2 6

W =  —  {sin2 0[- l/p'prJ + 2f'pT1 + g'(ln Pl + ,)] + hf'pT1
Eh

- \{fp" + 4f'p" + 6/V)pr2 + A(15/V2 + io/p'p")pr3
- f/p'V4 + h(g'p" + 3g"p')pTl - k'p'2pr2 + g'"(in P, + 1)}
- tan 0(A + A" csc2 6) + B'pt sec 6 + Bp' sec 6.

Expressions for displacements Dz, Dv, Dx in the x, y, z (or any other) directions are
best derived by taking a scalar product between a unit vector in the given direction
and D of (3.1). For instance,

Dz = k D = v cos 0 — w sin d. (3.6)

4. The current literature on shells contains very little on the boundary conditions
in the membrane theory of shells. We recall that local bending of the shell was dis-
regarded according to the simplifying assumptions of the theory. Thus we cannot
expect to satisfy all of the usual boundary, conditions. For instance, we cannot ask
that the heavy end bulkhead be considered rigid; in bending of the shell as a whole
this would entail e„ = Nt = 0 in the end section which could consequently transmit
no bending moment. By allowing deformations in the plane of the end sections we
remove the restriction on Nt and the problem of bending has a solution (see section 5).
One has to decide in every particular problem which boundary conditions correspond
more nearly to the assumption of no local bending.

A casual reader might be tempted to interpret the contribution of A and B to
the displacements in (3.4) as that of rigid body motion since it is present when the
stresses vanish. However, it is conceivable that a given state of stress induces inex-
tensional displacements other than those of a rigid body as necessitated by the shape
of the shell. Thus, in the case of a non-circular cylindrical shell under torsion, A ac-
counts for the warping of the cross-sections.6

In general, these inextensional deformations are accompanied by local bending
stresses which must be small to be neglected in accordance with our assumptions. One
would expect that no energy is expended in the inextensional deformations. The strain
energy in shells loaded through the end-sections is

1 f" f2r/iV( nI\
v = rJjAE+ir) >■"""■ (41)

6 Specifically, A =(T/2A<,Gh) {/^pd<p — (l/2A0)f^(xp cos <p-j-yp sin <p)d<p\. This expression is found by
the method indicated in section 8.
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or
1 r 2t= 7 J. <"■tu + Ntv)ptd<p

t-t i
(4.2)

Substituting (2.5) and the contribution due to A and B into (4.2) and integrating by
parts, we find that our expectation is verified. The accompanying local bending, how-
ever, absorbs energy and, therefore, places limitations on the inextensional displace-
ments according to the principle of minimum strain energy. The minimum expendi-
ture of energy in bending occurs when the inextensional displacements reduce to rigid
body displacements.

One can easily verify that the most general functions A and B corresponding to
rigid body displacements have the form

A = — ax sin 9 cos <p — av sin 9 sin <p + az cos 9 + axy0 cos 9

— ayxo cos 9 + az sin 6(y0 cos <p — xo sin <p), (4.3)

B = a x cot 9 cos <p + av cot 0 sin y + az,

where ax, ay, az represent the infinitesimal translations in the x, y, z directions;
ax, av, a.z the infinitesimal rotations about the x, y, z axes; and xo, y o the .coordinates
in the base section Co-

Instead of imposing conditions on the displacements, one may prescribe a sensible
distribution of stresses at the boundary. We note that by (2.5) the state of stress in
the whole shell is determined as soon as the stresses Nt and Nst are given at one end-
section. Thus two different stress distributions which are statically equivalent over
an end-section will determine distinctly different stress distributions in the rest of
the shell.7

S. We shall study first the effects of taper8 as exhibited in a conical shell of circu-
lar cross-section; later, we shall discuss the influence of a variable radius of curvature
pt of the section Ct.

Let M represent the bending moment (causing tension for x(>0) applied to the
shell through the end-sections Co and Ci. We shall try to satisfy the conditions that
the end-sections (bulkheads) remain plane, i.e.,

Dz = 0 for t — 0; Dz = /3(xo — h sin 9) for t = (5.1)

where 13 is the (undetermined) angle of bending, and that the displacements due to A
and B reduce to rigid body displacements (4.3). By virtue of (3.6), (3.5), and (4.3),
we obtain for the first of conditions (5.1)

sec 8 csc ■I1
12 r (2/'(l + sin2 9) + /"')

Eh [2 r
+ (g' + g") In r + vg' sin2 6 + g"'| — avr cos <p = 0. (5.2)

7 This is the price that has to be paid for the simplifications due to the assumptions of the membrane
theory. A "disturbance" of the state of stress on one end-section (the difference between the equivalent
stress distributions) "propagates" itself along the generators without "dying out." The general theory of
thin shells would lead to differential equations of higher order; for these one can find solutions representing
disturbances that die out with the distance from the end-section.

8 All the results of sections 5-9 simplify to the corresponding expressions for a cylinder as the taper
approaches zero.
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By symmetry, the functions g' and/' are odd in ac0; let their Fourier expansions read
oo oo

g' = 12 (2» + l)a2n+1 cos (2m + 1 )<p, f = Yj (2m + l)6«»+i cos (2» + 1)<P- (5.3)
0 0

Since the resultant force F0 on Co must vanish, one concludes from (2.6) that Oi = 0.
Equation (2.7) yields cos 9 or bi = —(l/ir)M sec 6. It follows from the co-
efficient of cos <p in (5.2) that

ay = (l/2irEhr2) sec2 6 csc 0(1 + 2 sin2 d)M. (5.4)

Substituting (5.4) and (5.3) into the second of conditions (5.1) and equating coeffi-
cients of cos ip in the two members, we obtain

M sin 0(2 + csc2 0) ( 1 1 )
P = — -■{ : }. (5.5)

2irEh cos2 0 l(r — h sin 0)2 r2 j

For the coefficients a^+i and &2n+x, « > 0, one obtains a system of two homogeneous
equations with a non-vanishing determinant. Therefore a2n+i = &2n+i = 0, w>0, and

M sec 0 cos <p M tan 6 sin <p
N, = » N.t = , (5.6)

7r(r — t sin d)2 ir(r — t sin 0)2

M sin 0(2 + csc2 0)

2irEh cos2 0 {   —1 (5.7)\ (r — t sin 0)2 r2/

If we designate by It the moment of inertia, ir(r — t sin 8)8, of Ct about the neutral axis,
we can write Nt = (l/It)Mxt sec 6. Essentially the stresses in the z direction fol-
low the classical beam formula; the influence of taper is manifested by the presence
of the x components of stresses Nt which have to be balanced by N,t. From (5.7) we
see that all sections Ct remain plane. The rate of change of the angle of bending
increases as the shell grows narrower:

dp M{ 1 + 2 sin2 0) Af (1 + 2 sin2 0)

dz irEh cos3 0(r — t sin 0)3 Ehlt cos' 0

Further effects of taper are apparent in the other displacements:

(5.8)

M tan 0
v = cos

2 ivEh
( 2 csc2 0 1 )

A — --(2csc20 - „)L (5.9)
\r — t sin 0 r )

{■

( csc2 0 — 4 1
<p < cos2 0(2 csc2 0 — v)

U — t sin 0 r

»}■

M sec 0 (csc2 6 — 2 — 2v 1
u = sin <p< (2 csc2 0 — v)

2tEh (. r — / sin 0 r
+ — (r — t sin 0) (csc2 0 + 2) , (5.10)

M sec2 0 _ _
w — cos i cos2 0(2 csc2 0 — y)

2irEh U — / sin 0 r
+ — (r — t sin 0)(csc2 0 + 2) J-, (5.11)

r2
M sec 0 12 — csc2 0 + 2v sin2 <p 1

Dx = <• 1- — (2 csc2 0 — v)
2irEh ( r — / sin 0 r

 (r — t sin 0)(csc2 0 + 2) } . (5.12)
r2

>}■

»}•
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If we take for X, the fictitious displacement of the axis of the cone, the average of Dx
over Ct (by analogy with a cylinder or prism), we obtain for the slope of the deformed
axis

dX M sin 9 (2 + v — csc2 6 1

dz 2 it Eh cos2 9

(2 + v - csc2 6 1 1
\~f—r^r + T(2 + csc20)r- (5-13)I (r — t sin 6)2 r2 )

Comparison with equation (5.7) shows that the axis is not perpendicular to the sec-
tions Ct as one might expect. Nor is the increment in slope equal to /3, the angle be-
tween the end sections. In fact, for csc2 9 = 2 + v, a large taper, the axis remains alto-
gether straight despite the angle between Co and C*. This is due to a slipping effect
caused by an interplay of the shearing forces Nsl and the x components of Nt. Finally,
let us check (5.5) by the customary9 application of Castigliano's Principle, dV/dM = $.
Substituting (5.6), (5.9), and (5.10) into (4.2), we have

. M2 sin 9 2v
F|,_„ = , (5.14)

AirEh cos2 6 r2

M2 sin 6(2 + csc2 9 + 2v) ( 1 -a-V = <- (5.15)
AirEh cos2 9 l(r - h sin 0)2 * '

M sin 9(2 + csc2 6 + 2v)M sin 9(2 + csc2 6 + 2v) I 1 1 ^

2irEh cos2 6 I (r — h sin 6)2 r2 / (5.16)

The discrepancy between (5.5) and (5.16) is negligible in practical applications, but
is interesting theoretically. It springs from a loose interpretation of Castigliano's
Principle above, which is strictly true only for a concentrated couple M. Since M is
distributed over the end sections, it does work not only in bending the shell but
also in deforming the end-sections within their planes, as seen from (5.14). When
the end-sections are alike as in a cylinder or prism, as much energy is spent in the def-
ormation of one end as is gained at the other end; then, Castigliano's Principle holds
even for a distributed moment. But to obtain the correct angle of bending in the case
of a cone, one must deduct from the total strain energy (5.15) the net energy absorbed
in the plane deformation of Co and Ci, namely

M2v sin 9

2wEh cos2 9{—1 11.l(r — t\ sin 9)2 t2 j

6. We derive easily the expressions for the stresses in a cone twisted by a torque T
by making either Dz = 0 or iV, = 0 at C0 and C\ and using (2.6) and (2.7),

T
N.t = —  , N, = 0. (6.1)

2ir(r — t sin 6)2

From the displacements or the strain energy we obtain the total angle of twist 7 and
the angle of twist per unit length of the cone

8 See for instance Timoshenko, Strength of materials, vol. 1, D. Van Nostrand, New York, 1940,
p. 312.



110 VLADIMIR MORKOVIN [Vol. II, No. 2

T csc 6 C 1 1 "I dy T sec 6
7 =

4trGh
1 ( 1 1 ") dy T sec 6J 1 —  (6.2)

(.(»• — U sin 0)2 r2 ) dz 2irGh(r — t sin 0)3

Here, the effects of taper as manifested in (6.1) and (6.2) are not unexpected.
More interesting is the case of a cone supported at Co and bent by a force R (in

the x direction) distributed over CV We learn from (2.6) that the function /(<p) and
hence the shear stress N,t do not actually contribute to the resultant R acting on
any section Ct■ Expressions (2.6) and (2.7) show that the term in cos cp of g' alone in-
fluences the resultant force as well as moment on Ct. We superpose a state of stress
given by (5.6) with M = R cot 0{r — t\ sin 6) in order to bring the moment across C\ to
zero, and obtain the final result

— R{1\ — f) cos <p — R(r — ti sin d) sin ip
Nt —   ) N,t = —   (6.3)

ir(r — t sin d)"1 tt(r — t sin 6)2

7. Let us now consider shells with non-circular cross-sections Ct■ The coordinates
of points on Ct are expressed in terms of p, and <p

/» <P /» <P

xt = xt(0) — I pt sin <p dtp, yt = I pt cos <p d<p. (7.1)
J o J o

It is clear from (7.1) that pt cannot contain any terms in cos <p or sin <p if the shell is
closed. If only cosine terms appear in the Fourier expansion

Pt = r< — X) r" cos tup, (7.2)

the section Ct is symmetric with respect to the x axis. The simple section, for which
rn = 0 if re5^3, approximates the cross-section of many a fuselage:

Xt = r, cos <p + \r% cos 2<p — Jr3 cos 4(p;

*'(0,-r' + V + r (7.3)
yt = rt sin <p — \r3 sin 2<p — jr3 sin 4<p; yt{ir/2) = rt.

The neutral axis of the sections coincides with the y axis (i.e., is independent of t)
if xt contains no constant term and if

f,2r ^ Tf r»(r"+i ~ r«-i) „ ^ .x
xopodip = — 2^  = 0- (7.4)

2 2 re

In bending, only sections satisfying (7.4) will be considered.
8. The stresses in a shell of constant slope under torsion are determined from the

conditions that the load is applied in such a manner that only shearing stresses
are generated at the end-sections. The conditions -ZVi = 0 at t = 0 and t = h yield
f=kpo(fio—ti sin 8) and g = k(po — ti sin 0). Substituting the expression for/into Nat, we
find the torque T on Co

T = J" R X N,t\pod(p = k sin 6 R X — ds0 — h sin 6 J R X \d<p| ,
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which reduces to

T = k sin 6 {2A o — /jLo sin 6} = k sin 6 {A o + A i — irtl sin2 6}. (8.1)

Here the A's represent the areas of the sections and Lo is the length of Co, all quanti-
ties easily measurable. Then,

T popi
N.t = . (8.2)

(A o + A i — irt\ sin2 0) p\

— T t / p{\' — T sin 6 t(t\ — t)p'
N, = ( — )=   —. (8.3)

(Ao + A i — Tt\ sin2 0) p,\ pj {A 0 + A x — wt\ sin2 6) p)

The effect of the variable radius of curvature of Ct is observed in the expression for Nt\
tensile stresses increase directly with p' and inversely with pf.

The expression (4.2) for strain energy takes the form

k- csc d I t\ sin
v = 2Eh |<i(l + ") sin3e(£o + LO + 12 | ( — )dv

t\ sin

2

and the angle of twist is

T
^ Ek(A0+Ai—irtl sin2 9)'-

TO
f21 p'2(~+~)dv ~ f2Tp'2 ln (~)dv\' (8-4)

2 Jo \ Pi p o/ \ Po/ )

r r (t\ sin2 e /l l \

(85)
11 sin 6 ^— P

The quantity in the braces is of the order of sin6 6. Also, each of its terms contains the
factor p'2. In the common case of small taper and nearly circular shell we may use as
a good approximation

Th(L0 + LO , .
7<ipp = * (8.6)

2Gh(A0 + Ax - *t\ sin2 6»)2

Neglecting the terms in the braces of (8.5) is equivalent to disregarding the effect of
the stress Nt; see (4.1).

The inextensional displacements given by A and B in (3.5) can be determined
from the twist of the end-sections (centers of twist along z axis)

u = 0, t = 0; u = 7(#i cos <p + Jx sin tp), t — t\. (8.7)

These displacements include warping.10 The actual process of solving (8.7) is quite
tedious even when a definite section is given.

9. We conclude with a short discussion of stresses in a general shell of constant
slope bent by couples M as in section 5. We assume that the moments at the end-sec-

10 For a treatment of warping along similar lines see R. V. Southwell, On the torsion of conical shells,
Proc. Royal Soc. London, (A)163, 337-355 (1937).
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tions Co and C\ are applied in such a manner that the stress N, at these sections is
proportional to the distance from the neutral axis:

Nt = eoXo for t = 0; Nt = e\Xi for t = h. (9.1)

Conditions (9.1) and the fact that the moments across Co and C\ are alike lead us to
the following expressions:

j _ Mpopi j^o Qi"4 ̂  _ M ( PoQo ^
t\ sin 6 cos 8 U0 /J ' h sin 8 cos 8 I 70 7i f '

where the I's are the moments of inertia about the neutral axis of the full respective
sections and Qt = f*xtptd(p the variable first moment (about the same axis) of the sec-
tion included between 0 and <p. The expressions for the stresses themselves read:

Mpopi (Qo (M
_ i 2 a I T r ( ' (9-3)hp] cos8 Uo Ii)

M(h — l)ts\n8 p'(Qo (M
hcosd p]\l0 IJ

M(ti — t)xo po Mt x\of-) 1   (9.4)
tjo cos 8 p] ti cos 8 hp]

The corresponding expressions for strain energy and displacements are very cumber-
some and can hardly be useful in practical applications.

N, = -


