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THE INTRINSIC THEORY OF THIN SHELLS AND PLATES
PART III.—APPLICATION TO THIN SHELLS*

BY

WEI-ZANG CHIEN
Department of Applied Mathematics, University of Toronto

10. Definitions and method of approximation. The method of approximation used
below is essentially the same as in the case of thin plate theory. We define e to be
the average reduced thickness of a shell. (We may recall that the reduced thickness
of a shell is the ratio of its thickness to a selected lateral dimension of its middle sur-
face). Then for a thin shell, € is a small quantity. This definition of a thin shell is in
agreement with that of a thin plate given in Part II.

A thin shell is said to ha we. finite curvature when the smallest radius of curvature
of its middle surface and the selected lateral dimension are of the same order of mag-
nitude. Furthermore, a thin shell is said to have small curvature of order b when the
ratio of the selected lateral dimension to the smallest radius of curvature of its middle
surface is of the same order of magnitude as eb, where b 1. Thus a thin plate may be
regarded as a thin shell of small curvature of order <x>.

We consider a family of co1 shells of the same material with diminishing reduced
thickness, each in a state of stress under (i) external forces applied at the edge,
(ii) surface forces and (iii) uniform body forces. We assign to each shell a value of a
parameter e (0<e<€i) denoting the average reduced thickness, so that the thickness is

2h = 2«&(x1, x2). (10.1)

The quantity ei is supposed to be small, but the basic idea of the method is that we
seek solutions valid for all e in the range 0<«<€i. In this theory, e is the only small
quantity. All quantities occurring (except Poisson's ratio cr) are functions of €. No
quantity is small unless it tends to zero with e.

For the greatest generality suppose all quantities to be power series in e. Thus,
supposing the middle surface itself to depend on e, we have
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where b is either zero or a positive integer. aw„p and bw«,3 are functions of x", inde-
pendent of e. For b — 0, we are dealing with thin shells of finite curvature, while for
i^l we are dealing with thin shells of small curvature of order b.

Furthermore, we shall represent Qi, P\ X[0], TaP, Ta0, Lafi, pap, qap by power series
as in Part II;
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Here k, k6, n, n0,j,j0, t, u, I, p are integers greater than zero, and q is zero or a posi-
tive integer. The case g = 0 corresponds to problems of finite deflection. The quantities
(?(«>• (?5>. P%) etc- are functions of x", independent of e.

p-values

q-values

Fig. 4. Classification of problems of thin shells with finite curvature (6=0).
p = order of extension of middle surface.
q= order of change of curvature of middle surface.
6= order of initial curvature of middle surface.

Then the problems of thin shells can be classified by assigning integral values to
p, q and b. With p, q, b given, the values of ko, k, n0, n,jo,j in (10.3) are fixed by the
condition that X^)(0], X£)[0], P°„o), P"n), <2ot»), Qm should contribute to the principal
parts of (6.34), (6.35), without dominating these equations to the exclusion of palj
and qal3. The values of t, u, I of Ta?, L"P, Ta0 are immediately fixed through the ex-
pressions (6.29), (6.30), (6.31). With p, q, b, k, ko, j, jo, n, n0 fixed, the equations of
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equilibrium and compatibility in the first approximation are immediately obtained
by substituting (10.1)-(10.5) into (6.34), (6.35), (6.43), (6.44), and picking out the
principal terms in e from the resulting equations. This gives us six differential equa-
tions in six unknowns p(p)o0 and g«,)O0. For the various combinations of values of
p, q, b, the forms of these differential equations fall into several types. The classifica-
tion of these types will be given below.

11. Classification of all thin shell problems. The classification of the problems of
thin shells with finite curvature (b= 0). The following is a complete classification of the
problems of thin shells with finite curvature (b = 0) based upon assigned values of p, q.
The classification is shown graphically in Fig. 4.

It is found that the (p, g)-points in the diagram (g^O, p~^ 1) are broken up into
eight groups by the division lines AB, OC and the p-axis. For q = 0, the principal part
of (6.34) or (6.35) takes three different forms depending on the position of the point
on the £-axis relative to the point A, while the principal parts of (6.43) and (6.44)
are the same for all values of p. For g2:1, the principal part of (6.34) or (6.35) takes
three different forms depending on the position of the (p, g)-point relative to the line
AB, and that of (6.43) or (6.44) takes three different forms depending on the position
of the (p, g)-point relative to the line OC\ each of these forms is different from that
for g = 0. It follows that the (p, g)-points are divided into eight groups and so the
complete classification of all problems of thin shells of finite curvature involves con-
sideration of eight types (Types SFI-SF8). (The letter 'S1 denotes shell, while ' F'
denotes finite curvature.)

In order to save space, we shall not discuss these types in detail. The results for
these types are summarized together with those for thin shells with small curvature
in the tables in the Appendices. The principal parts of the equations of equilibrium
and compatibility are shown in Table III, and orders of magnitude of the external
forces and the principal parts of the macroscopic tensors in Table IV.

The classification of the problems of thin shells with small curvature (& 2:1). The
following is a complete classification of the problems of thin shells with small curva-
ture based upon the assigned values of b, p, q. The classification is shown graphitally
in Fig. 5 (for b= 4), Fig. 6 (for 6 = 2), Fig. 7 (for b = 1). The case b = 4 is typical of the
cases 3 ^ 6 < oo.

We shall now explain Fig. 5. We see that the (p, g)-points are broken up into
27 groups by the division lines and the p-a.xis. Of these division lines, the line B'BB"
(i.e., q =b =4) is the most important. It divides the (p, g)-plane into three main re-
gions. For any point on B'BB", the curvature in the unstrained state and the change
of curvature during the strain are of the same order of magnitude (g = & = 4). For any
point on the left of B'BB", the magnitude of the curvature in the unstrained state
is smaller than the magnitude of the change of curvature (q<b = 4), while for any
point on the right of B'B", the magnitude of the curvature in the unstrained state
is greater than the magnitude of change of curvature (q>b= 4).

For q = 0 (i.e., on the p-axis) in Fig. 5, the principal parts of (6.34), (6.35) take three
different forms depending on the position of the points on the p-axis relative to the
point A, while the principal parts of (6.44), (6.43) are the same for all points on the
p-axis. For 1 ̂ q<b= 4 (i.e., in the region between the £-axis and B'BB"), the prin-
cipal parts of (6.34) or (6.35) or (6.44) take three different forms depending on the
position of the (p, g)-point relative to the division line AC or AB or OD respectively,



1944] INTRINSIC THEORY OF SHELLS AND PLATES 123

while the principal part of (6.43) is the same for all the (p, g)-points in this region.
It follows that the (p, g)-points in the region on the left-hand side of B'B" are divided
into 11 groups (Types 551-5511). (The letters '55' denote the shell with small curva-
ture.)

B" E

q-valuea

Fig. S. Classification of problems of thin shells with small curvature (6=4).
p = order of extension of middle surface.
q = order of change of curvature of middle surface.
b = order of initial curvature of middle surface.

For q = b = 4 (i.e., on B'B"), the principal parts of (6.34) or (6.35) or (6.44) take
three different forms depending on the position of the (p, g)-point relative to C or
B or D respectively, while the principal part of (6.43) is the same for all points on this
line. Furthermore, for q>b = 4 (i.e., the region to the right of B'B"), the principal
parts of (6.34) or (6.35) or (6.43) or (6.44) take three different forms depending on
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the position of the (p, g)-point relative to the division line CG or BE or B'H or DF
respectively. It follows that the (p, g)-points on the right-hand side of B'B" are di-
vided into 9 groups (Types 5519-5526, 5510). It should be noted that, as far as the
principal parts of (6.34), (6.35), (6.43), (6.44) are concerned, the (p, g)-points lying
between the lines IDF and ICG are regarded as one group (Type 5510). Therefore,

q-values

Fig. 6. Classification of problems of thin shells with small curvature (6 = 2).
p = order of extension of middle surface.
2=order of change of curvature of middle surface.
b= order of initial curvature of middle surface.

together with the groups on the left-hand side of B'B", we have in all 25 groups of
(P< <z)-points in Fig. 5. And consequently the complete classification of all problems
of thin shells with small curvature of order b = 4 involves consideration of 25 types
(Types 551-5511, 5513-5526).

The general appearance of the classification diagrams for any b satisfying 3 ^ b < »
is the same as for b = 4. An increase of b makes the line B'B" shift to the right, while
a decrease of b makes it shift to the left. On examining the various groups of (p, q)-
points in these diagrams (for any integral value of b in the range of 3^b < a>), it is
found that the corresponding groups occupying the same relative positions with re-
spect to the division lines possess the same set of equations of equilibrium and com-
patibility in the first approximation, and so belong to the same type of problem.
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Therefore the complete classification of all problems of thin shells with small curva-
ture of order 3^b< «> involves consideration of 25 types only.

For b = 2 (Fig. 6), the situation is almost the same as in Fig. 5, but with the groups
559, 5511 missing. The other groups are the same as those shown in Fig. 5 for b = 4,
and so no extra.types arise.

For b = 1 (Fig. 7), the situation is only slightly different from those in Figs. 5 and 6.
Instead of the two separate division lines IDF and ICG for Eqs. (6.34) and (6.43) in
Figs. 5 and 6, we have one common division line D'F' for both equations. Further-
more, the triangle formed by the division lines ID, DC, I Cm Figs. 5, 6 collapses into

q-ralues

Fig. 7. Classification of problems of thin shells with small curvature (6 = 1).
p = order of extension of middle surface.
g = order of change of curvature of middle surface.
b = order of initial curvature of middle surface.

an isolated point D' in Fig. 7. Thus instead of 25 groups in Fig. 5, or 23 groups in
Fig. 6, we have only 15 different groups. Among these groups, 13 belong to the types
already mentioned in the case 3^b< °o (Types 551-553, 5513, 5516-5521, 5524-
5526); the other two are Types 5512, 5527.

On comparing the classification of (p, g)-points on the left-hand side of B'B" in
Figs. 5, 6, 7 with that in the corresponding region of Fig. 3, it is found that they
are identical with each other. In fact, for these types, the equations of equilibrium
and compatibility in the first approximation are identical with those stated in Table I
(Part II) for the corresponding types of thin plate problems. Therefore, we have the
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following important conclusion: A problem of a thin shell with small curvature of order b
is effectively equivalent to a problem of a thin plate in the first approximation, if q<b,
i.e., if the change of curvature is greater than the curvature of the shell in the un-
strained state.

It should be noted that for b= oo, Fig. 5 becomes exactly Fig. 3 for the thin plate
problem.

The results are summed up as follows:
(i) The complete classification of the problems of thin shells with small curvature

of order bill involves the consideration of 27 types (Types 551-5527).
(ii) Among these 27 types, 11 are equivalent to problems of thin plates; the char-

acteristic of these types is q <b.
(iii) When 6 = 1, these are two types (Types 5512, 5527) of particular interest.
We shall not discuss all these types in detail. The discussion of Type 5512 will

serve as an example. The results for all types are summarized in tables in the Ap-
pendices. The principal parts of the equations of equilibrium and compatibility are
shown in Table III, and the orders of magnitude of the external forces and the prin-
cipal parts of the macroscopic tensors in Table IV.

Before entering on the detailed discussion of Type 5512, a useful result for small
curvature (&^1) will be mentioned. On substituting aag, bag from (10.2a, b) into
(6.39b), it is found that the lowest power of e in the resulting expression is «°. The
corresponding coefficient gives rise to the equation

R(O)pa0y = 5(a<O)/>?.«0 + &(O)a0,py ~ S(O)p0,ay ~ S(0)ay,/3p)

+ a'o){ [pY. ""jooM. a]O0 — [p/9, 7T ]a0[<xy, 5]a0} = 0, (11.1)

where the Christoffel symbols are calculated for Eq. (11.1) expresses the fact
that in the case of small curvature, the curvature tensor vanishes in the first approxi-
mation. Hence the order of the operations of covariant differentiation with respect
to a(o)a0 is immaterial; this result will be found very useful later.

12. Detailed discussion of type 5512 (b = q = 1, p = 2) and its applications. General
equations. By the condition that in the first approximation, (6.34), (6.35) receive sig-
nificant contributions from F"m), P"n), X^t)[01, Xy)[o!, Q(k), we must have

wo = 4, j0 = 3, k0 = 2,

n = 3, 7 = 2, k = 3.

By substituting the e series ipto (6.34), (6.35), (6.43), (6.44), it is found that the
lowest powers in e occurring in the resulting equations are respectively e4, e3, e1, e2.
The corresponding coefficients give rise to the following equations:

~ AffibmpyP(2)T\h — 2A(o1*x<5f(i)p7p(2)IxA + f^4(?i)X(Q(i)ixA3)
2(1 - 2a)

+ ^4) + 2*(3)io] A + (0(3)^) ix -I   HmQ%)h
ao 1 — 0"

1 - 2«r
+ ~ Q(Vr\&(o)Q(2)h = 0, (12.2a)

1 — a

2A^(pm ,x£) |, + P("3) + 2X(2)[o\h + a5)«M „ = 0, (12. 2b)
«0 1 — O" a0
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n(o)<Z(i)«0lY = 0. (12.2c)
a0

2n(o)nfo)P < 2) p 71 + "(o)nfo)9 Wp-rQ W<>P + (*>0) ~~ 4Haja"fi)q (1) a/3 ~ 0, (12.2d)
ao

where a0 under stroke indicates covariant differentiation with respect to the tensor
a(o)afl and x". The other symbols represent

=     («&$, + (1 - <0a(o>ft)), (12.3a)
I — oL

n(o) = e^ao)-1'2, a0 = det. (a(0)xx), <n = <22 = 0, «" = - e21 = 1, (12.3b)

b"f) = a^afojfecDTX. Hw = ia(0)&(i)TX- (12.3c)

The macroscopic tensors (6.29)-(6.31) can be written as

= 12 <3Wx* + ajgQ^je* + (12.4a)

L-K = fr$}amTyA^qmxthh* + O(^), (12.4b)

r-° = {M'ou (Q(DX^)i, + + 0(e5). (12.4c)
a0

Equations (12.2a, b, c, d) are six equations for the six unknowns p(2)Ix and <z<i>tx.
Since by (11.1) the order of the operations of covariant differentiation with re-

spect to a<orx is immaterial, (12.2c) implies the existence of w^ such that

9(1)03 = ^(1)1^. (12.5)
«o

Thus the determination of g<i)O0 is reduced to the determination of the single func-
tion w(i). Furthermore, instead of using p(2)„^ as the rest of the unknowns, we may
use 7^. By definition, T$e3 is the principal part of the macroscopic tensor Taff,
namely, by (12.4a),

= 2 A^pmrXh + —^— atQ%)h. (12.6)
1 — <T

This is a symmetrical tensor; so it has only three independent components. Substitut-
ing (12.5), (12.6) into (12.2a, b, d), we have

— T'^WdJIxX — Jb(l).x7$ + f"<4(0I)X(w'U)|irxA3)|p.r + P(4)
ao ao ao

+ 2Z(13)[o ]h + (Qlz)h)\T + 2H(i)Q°(2)h + W(i) irxa^Qpi^ = 0, (12.7 a)
a0 a0

+ P(3) + 2X?2)l0]h =0, (12. 7b)
a0

n(o)nfo) {(1 + c)a(o)TPa(o)Tj — fa(o)PTa(o)Ti} > \ap + ca'oiQwkx
V h I a0 ao

+ nfo)n((«w'(l)l^7W'(l)|ap + (&(1) — ^(lja^WfDIajS — 0. (12.7c)
«0 ao ao

Equations (12.7a, b, c) form a set of four equations for the four unknowns w(i)
and Tgy

Special case. The following special case is interesting. If
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■PS) = *(2)[ol = 0, (12.8)
then by (12.7b) there exists a stress function x<3> such that

T$ = «?o>?o)X(«>WX. (12.9)

Here x<3) is a function of x", having properties similar to those of the Airy function
in the thin plate theory. Substituting (12.8), (12.9) into (12.7a, c), we have

— i"Wn(0)(2w,(l)|I{ + £(l)T«)xC3)|Xp + |-A(01)X(W(1)|txA3)|pt
Qq Sq a o an

+ f°4) + 2Z(°3„o,A + 2HwQl)h + a[ojW(i)|Tx()(2)^ = 0i (12.10a)

{o-a'oja'oj — (1 + f)a'o)a(o)} X(3>i«x\ \*? + <ra'o)(?C2)|TX
V It a0 / a0 ao

+ nfo)nfo)w'(i)loTw(i)l^ + (6(i) ~ 4fl'(i)a'o^)w(i)|»x = 0. (12.10b)
ao ao ao

Equations (13.10a, b) are two equations for the two unknowns x<3) and w(i)- These
equations are valid in general for a shell of non-uniform thickness. For the case of
uniform thickness, (12.10a, b) are immediately simplified to the forms

— §n*o)»»(o)(2w (i) | xj + fo<i)xs)x(3)|Xp + •Da*0"5a(0)W(i)|lr7xi
ao fio ao

+ -Pf"} + 2X(°3)[0]/j + 2HmQ(-i)h + 3(0)^(1) I xx(?(°2)^ = 0, (12.11a)
ao

a'(«a(o)X(3)|x7X5 — <rhalo)Q( 2)|tX + ^n'o)n(o)w'(i)l/>7w'(i>l'-x
ao ao ao ao

+ h(4Hma$} - b$)w<i„,x = 0, (12.lib)
«0

where D is the reduced flexural rigidity, as given in (9.14). Applications of these two
equations will be discussed below.

A circular cylindrical thin shell with small curvature and uniform thickness under
end thrust and normal pressure. We shall assume that the external forces and the edge
loading are such that the problem is of Type 5512. Furthermore let us assume that

*<°3,[o] = 0(2) = 0. (12.12)
We have in mind the case where body force is negligible and where the shell is loaded
normally on one side only. A number of terms disappear from the equations of equi-
librium and compatibility (12.11a, b) for Type 5512. Thus if we write these equations
in terms of the small principal parts instead of in terms of the finite coefficients of the
lowest power in e, we have

— 5nf^nfo](2w|xj + bri)x\\P + Daryauw\rt\i + P° = 0, (12.13a)
a a a

aTyaxsx\ry\s + /in^n^W|^W|xJ + h(4HarX — i'Vlrt = 0. (12.13b)
a a a a

Here a under a stroke indicates covariant differentiation with respect to the tensor a„,s
and x"; also

2/i3
D = ^ ST' AJ1 = a"^ (12 *14)

3(1 - <7 )
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Let us choose the set of intrinsic rectangular Cartesian coordinates on the middle
surface so that x = x1 is the distance measured along the generators of the cylinder and
y = x2 is the distance measured perpendicular to the generators. Then we have

au = a11 = a22 = a22 = 1, a12 = a12 = 0,
(12.15)

bu = bn = bu = fo12 = 0, b22 = b22 = 2/R,

where R is the radius of curvature of the cylindrical middle surface. In these coordi-
nates, Eqs. (12.13a, b) become

1
DAAw + (2w,xvx.xy — w,xxx,vy — w.vvX.xx) — X.xx + P" = 0, (12.16a)

R

i
AAx + 2h(w,xxw,vy — w,xvw,xy) + 2h —w,xx = 0, (12.16b)

R

where subscripts preceded by a comma denote partial differentiation. If we let R
tend to infinity, we get the von Karman equations for a flat plate. The equation
(12.16b) was recently obtained by von Karman and Tsien [l] in their treatment of
buckling of a thin-walled circular cylindrical shell under compression on the two ends.
If we apply the operators AA to (12.16a) and (1 /R)d2/dx2 to (12.16b) and add the re-
sulting equations, we obtain •

2h 2h
DAAAAw ^ w.zxzx H (w.xxw.vv — W,XyW,xV) ,xx

R2 R

= AA(P° + 2w,xyX,xy - W,xxX,yy ~ W.vyX.xx). (12. 17)

This is the equation of equilibrium used by von Karman and Tsien, except that they
omit the term

2h
— (W,XXW,yy — W,XVW,Xy),XZ. (12.18)

A

This term is important when the deflection is
comparable with thickness. However, it seems
simpler to treat the problem directly by means
of (12.16a, b) instead of using the higher-order
equation (12.17). Equation (12.16a) appears
to be new.

A small segment of a thin spherical shell un-
der external pressure. We shall assume that the
solid angle of the segment is small, so that the
curvature is small; we shall assume it to be of
the same order as the thickness, so that b = 1
(cf. section 10). We shall use spherical polar
coordinates as in Fig. 8, so that on the middle
surface in the unstrained state we have

ds2 = R2dd2 + R2 sin2 6 dp2. (12.19)

Since 6 is small, we write Fig. 8.
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ds2 = R2dd2 + R262d<p2. (12.20)
If we put

= X2 = v, (12.21)

the components of the first and second fundamental tensors are given by

an=R\ an = R262, an = 0, a11 = l/R2, a22 = \/R2d\ a12 = 0, (12.22)

bu=2R, b22 = 2R0\ bn = 2/R3, b22 = 2/R3d2, bn = b12 = 0. (12.23)

Futhermore, we have from (12.22), (12.23)

H = l/R, a = R*d2. (12.24)

All the Christoffel symbols are equal to zero, except

{2M - - {A}-'/"- <i2-25)
We shall assume that the problem is of Type 5S12. Substituting (12.21)—(12.25) into
(12.13a, b), we have

- ^7 j <y.»9 + R)(x,*p + 9x.e) - 2 (w,ev - yw.fj ^x* - — X.r^j

+ (w,w + Rd2 + Ow.«)x.m| + DAAw + P° = 0, (12.26a)

2h ( . / 1 \M
AAx + —7— < w,M(wiW + 0w,9) — I  w> ) >

i? 0 I \ 0 / J

+ 2h f— w.M + —(w.w + 0w.,) 1=0. (12.26b)
U® R3e3 )

Here A is the Laplace operator

l a4 l a2 ia i a a 1 a2
A = 1 1 = 6 1 (12.27)

R2 3d2 R2d2 d<p* R2d 3d R2d 3d 3d RW 3*>2

Equations (12.26a, b) are two nonlinear partial differential equations for two un-
knowns x. w-

We suppose that the problem has rotational symmetry. Then w, x are independent
of <p, and (12.26a, b) reduce to the form

d did dw 1 d / dw d%\ R d / dx\ P°6R4
— 6 d ( ) ( 6 ) + = 0, (12.28a)
dd dd 6 dd dd D dd\dd dd) D dd\ dd J D

d d 1 d d\ d / dw\2 d /
— e e hh—(—) +2hR—[e
dd dd e dd dd dd\ dd / dd\

The equations can be integrated once giving

dw \

dd)
1 = 0. (12.28b)
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d 1 d dw 1 dw dx R dx PVR*
9 6  —  6 1 = constant, (12.29a)

de e de do d de de d de 2D
did dx /dw \2 dw

6 6 h I ) h + 2hRd — = constant. (12.29b)
de e de de \dej de

Since dw/dd vanishes for 0 = 0, the constants are zero. If we introduce the quantities

1 dw 1 dx
a   M, 0 = » (12.30)

R de R2 de

the equations can be further simplified to the form

d*a da a R* P°R3
6 1 «0H 02 = 0, (12.31a)

de2 de e d 2D
d2l3 dp 0

e — + + h(a* - 02) = 0. (12.31b) ^
de2dee 1

The quantity a is the slope of the meridian line 1
in the strained state (Fig. 9). The significance of R 1
the quantity /3 is that 0/0 is the radial membrane \
stress (tension). Equations (12.31a, b) are the 1
fundamental equations for the determination |
of the buckling pressure of a small segment of
spherical shell.

If we assume that the first and second terms
in (12.31b) are negligible in comparison with the
other terms, then we can solve (12.31b) immedi-
ately for 0. Substituting the resulting expression
for 0 into (12.31a), we have Fig. 9.

d*a da a hR2 PWR*
6 h- = 0a(a2-02)  (12.32)

de2 deeD 2D

This is the equation used by von Karman and Tsien [2] in their treatment of buckling
of spherical shells by external pressure. It should be noted that the neglect of the first
two terms in (12.31b) is a rough approximation. Actually the first three terms in
(12.31b) are of the same order of magnitude.

Furthermore, if we introduce
r = Re, (12.33)

Eqs. (12.28a, b) can be written in the form

d did dw 1 d I dw dx
dr dr r dr dr D dr \ dr dr

d d 1 d dx
dr dr r dr dr

\ Id/ dx\ Par
) ('•—) + = 0. (12.34a)

/ RD dr \ dr/ D

d /dw \2 2h d / dw\
+ h— ( )+ (r  ) = 0. (12.34b)

dr\ dr J R dr\ dr J
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The quantity r is the radial distance measured along the meridian line from the center
of the shell. We see that these two equations are the same as the corresponding von
Karman equations for the circular plate under symmetrical loading [3], with the ex-
ception of the terms proportional to 1 /R; this is evident if we make R infinite in
(12.34a, b).

A summary of the whole paper was given at the end of the first section (Part I).

APPENDICES
(iii) Table III.—Table of the equations of equilibrium and compatibility of thin shell problems.

Types
(6.34)

I« lU l U »U r<J »U tU ,U tU'1 12 * 3 y4 16 '6 J7 JQ

(6.35)

IT i? /s u U 16

(6.44)

A A A A

(6.43)

J a 1 Ja.1

551
552
553*
554
555

556*
557*
558*
559

5510«

5511
5512
5513
5514
5515

5516*
5517*
5518*
5519*
5520*

5521*
5522
5523
5524*
5525*

5526*
5527

5F1
5F2
5F3*
5F4
5F5

SF6
5F7*
5F8

^1
£1
^1
^2
^2

£2
^2
^2
^3
^3
^2

£3
1

^1
^2
^2

^1
£1
£1
^1
£1

£1
^2
^2
^1
^1

^1
1

0
0
0
0
0

0
0
0

0
0
0

1^5 <6
1

1^5 <6
1^5 <6
1 ̂ 5 <6
2£q<b
2 £q<b

2£q<b
1
b
b
b

b
b
b

>b
>b

>b
>b
>b
>b
>b

>b
>b

0
0
0

£1
^1

£1
£1
^2

1
2

>2
1
2

2<Z+1
25+2

>2fl+2 •
2

2<p <2q
2 +q-b<q <5+6

2 q
2
1
2
2b

2b +1
26+2

>26+2
< q —6

q-b

<7-6+1
<7—6+2

fl+6
<7+6+1
5+6+2

>5+6+2
5+1

1
2

>2
5

5+1

5+2
>5+2

<5

In this table, the following notation is used:
The terms occurring in the first equation of equilibrium (6.34) are

/? = - 2A^qMh, 1° = 7° = A^uqIwqpyqxsh3
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H = P" + 2Xfoi + (Q>h) |Xt II = 1_ 2,7 aAq'*Q»h, $ = - A^bpyp^h,
a 1 — (T

$ = - hA%rMbpybuqrJi\ I°s = A%rUq^b„qxih\ 7° = —— 2HQ°h.
1 — a

The terms occurring in the second and third equations of equilibrium (6.35) are

I" = 2A%\p^h) lp, I", = fa"«,tAgf,(qxih,) i, - AST^Ma/i*) u-
a a a

It = F"+ 2Xfoh + a°>(Q°h) /f = (a^qrXaay + 2a"qwy)Qyh,
1 — G a

It = A^(6xS<?^/i3),P + \Al$la»*b*y{q^)u, /? = (2Ha^ + fi£)Q»A.
a a

The terms occurring in the first equation of compatibility (6.44) are

J" — 2ti{^n®0]pP7ia3, J°2 = n(^n^jgPTga/8,
a

A = 2a"^K, Jl = - (4Ha"f - b<*)q+
The terms occurring in the second and third equations of compatibility (6.43) are

Jul = 2n[o]qafJ\y, Ja2 = H[Q]bfl ^a(jp a\ | y ~f~ ,P7X|a _Pa7|x)-
a a a a

On account of the conditions which hold in the various types of problems, some of
these terms may be negligible in comparison with others. Table III shows by the
symbol 'x' those terms which are to be retained in the first approximation for the
various types. (The over-determined problems are denoted by *.) Thus for example,
for problems of type 551, we have the following equations of equilibrium and com-
patibility in the first approximation:

I°i + Ii + It = 0, I? + It + /? = 0, J! = 0, Jal = 0.

These equations are written in terms of the small principal parts instead of in terms
of the finite coefficients of the lowest power in e.

(iv) In Table IV, the following notation is used:
The terms occurring in the expresion (6.29) for the membrane stress tensor Taf

are denoted by

Tf = 2Af^p^h, Tf = - A$**qMh\

Tf = —a"PQ°h, Tf = AtfrUbxSq^h\
1 — cr

The terms occurring in the expression (6.30) for the bending moment tensor L"p
are denoted by

Lf = fnf
Lf = 2x4xarpA^b^Ppyh*

~ iX»< ~ 2«)~+
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Table IV.—Table of the external force system and the macroscopic tensors
for various types of thin shell problems.

Types

2*a/5

aS aP aP
1 i i 2 -*3 J

jafi | jo0

Ll T? r2 r3

551 ^
552
553
554 ^

555
556
557
558
559
5510

5511
5512

5513 <

5514
5515
5516
5517
5518

5519

5520

55211

5522
5523
5524
5525
5526
5527

5F1

5F2
5F3

5F4

5F5

5F6
5F7

5F8

2
2
3
3

<7+2
fl+2

4
<Z+3
9 +3
9+3
9+3
9+3

9+3
4

6+2
6+2
i)+3
6+3
6+3
6+3
6+3

6+P+l
6+p+l
6+p + l
6+p + l
6+P+l
6+P+l

6+P + l
6+p + l

9+2
9+3
9+3
9+3
9+3
9+3

2
2
3
3

9+1
9+1
9 + 1
9+2
9+2
9+3
9+3
P + l
P +1
P + l

2
2
3
3
2
2
3

29+2
29+3
29+3

3
P +1

29+1
3
2
2
3

26+1
26+2
26+3
26+3
P + l
*> + 1
P +1
P+l
<>+1
P+l

P+l
#+1

9—6+3
9+6 + 1
9+6+2
9+6+3
9+6+3

9+2

2
2
3
3

9+1
9 + 1
9 + 1
9+2
9+2
9 +3
9+3
P + l
P + l
*> + 1

1
1
2
2

9+1
9+1

3
9+2

29+2
29+2

9+2
9+2

9+2
3

6 + 1
6 + 1
6+2
6+2
6+2
6+2
6+2
6+P
b+t
b+p
b+t
b+t
b+t

b+t
b+t
9+2
9+2
9+2
9+2
9+2
9+2

1
1
2
2
9
9
9

9 + 1
9+1
9+2
9+2

t
t
t

1
1
2
2
1
1
2

29+1
9+2
9+2

2
t

2 9
2
1
1
2
26

26+1
26+2
26+2

t
t
t
t
t

t
9-6+2

9+6
9+6+1
9+6+2
9+6+2

9+1

1
1
2
2
9
9
9

9 + 1
9 + 1
9+2
9+2

t
t
t

1
1
2
2
1
1
2

29+1
9+2
9+2

2
P

29
2
1
1
2
26

26+1
26+2
26+2

t

9-6+2
9+6

9+6+1
9+6+2
9+6+2

9 + 1

1
1
2
2
9
9
9

9 + 1
9 + 1
9+2
9+2

t
t

1
2
2
2

9+1
9+2

3
9+2

29+2
29+2
9+2
9+2

9+2
3

6+1
6+2
6+2
6+2
6+2
6+2
6+2
b+t

b+P+i
b+t+2

b+p
b+p + l
b+P+2

b+P
6t <i + 1

9+2
9+2
9+2
9+2
9+2
9+2

1
2
2
2
9

9+1
9+2
9 + 1
9+2
9+2
9+2

t
<> + 1
<>+2

2
2
3
3
2
2
3

29+2
29+3
29+3

3
t+1

29+1
3
2
2
3

26+1
26+2
26+3
26+3
P + l
0+1
<> + 1
P+l
0+1
P+l

P+l
P + l

9—6+3
9+6 + 1
9+6+2
9+6+3
9+6+3

9+2

2
2
3
3

9 + 1
9 + 1
9 + 1
9+2
9+2
9+3
9+3
P + l
P + l
P + l

3
3
3
3

9+3
9 +3

4
9+3
9+3
9+3
9+3
9+3

9+3
4

6+3
6+3
6+3
6+3
6+3
6+3
6+3

6+P+3
6+P+3
6+p +3
6+P+3
6+p+3
6+P+3

6+P+2
6+P+2

9 +3
9+3
9+3
9+3
9+3
9+3

3
3
3
3

9+3
9+3
9+3
9+3
9+3
9+3
9+3
P+3
P+3
P+3

2
3
3
3

9+2
9+3

4
9+3
9+3
9+3
9+3
9+3

9+3
4

6+2
6+3
6+3
6+3
6+3
6+3
6+3

6+P+l
6+p+2
6+P+3
6+P + l
6+P+2
6+P+3

6+P+l
6+p+2

9+3
9+3
9+3
9+3
9 +3
9+3

2
3
3
3

9+1
9+2
9+3
9+2
9+3
9+3
9+3
P+l
P+2
p+3

The terms occurring in the expression (6.31) for the shearing stress tensor Ta0 are
denoted by

T" = Q"h, Tt =
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T« = 2A^(b,iP,yh*)lr + §(4 HP" + KP')h* + iHX^

i*.+(nb HQ' - ixS») - b"Q']"}:
Furthermore,
Mo = order of sum of the normal forces acting on the upper and lower boundary

surfaces, or order of P°,
n = order of sum of the tangential forces acting on the upper and lower boundary

surfaces, or order or P",
jo = order of normal component of body force, or order of X[®],
j = order of tangential component of body force, or order of Xfa,
k* = order of difference of normal forces acting on the upper and lower surfaces,

or order of Q
k = order of difference of tangential components of forces acting on the upper and

lower boundary surfaces, or order of Q",
t = order of membrane stress tensor T"",
u = order of bending moment tensor Lal>,
I = order of shearing stress tensor Ta0.
This table gives (a) the values of na, n,j0,j, ko, k, t, u, I, (b) the principal terms in

the expressions for Tafi, Lap, T"0 (denoted by 'x'). The terms not marked with 'x' are
negligible in comparison those principal terms. It will be noted that there are two
lines in the table for 551, 554, 5513, 5521, SFl, SF5, and three lines for 5519,
5520, 5F4, 5F8. This is because, in each case, k may have two or three values.

For example, in the case of Type 551, we have for Tmf, L"f,

T"P = T? + Tf, L"0 = Lf,
while for T"°,

T"a = Tf (if k = 1),

T"<> = TT + T? (if k = 2).
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