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THE AERODYNAMICS OF A RING AIRFOIL*

H. J. STEWART
California Institute of Technology

Abstract. The downwash required to produce a given vorticity distribution is com-
puted for a ring airfoil and the results are compared with the corresponding two-
dimensional case. From this it appears that if the curvature of the chord plane is
small, as is the case with normal amounts of dihedral, the effect of this curvature on
the chordwise lift distribution of a wing is extremely small. If the radius of curvature
is small compared to the chord, as it is near the vertex of a cranked wing, it is seen
that this curvature may cause comparatively large changes in the lift distribution.

1. Introduction. At the present time, the steady state two-dimensional airfoil the-
ory is a highly developed subject; and, subject to the usual limitations of perfect
fluid theory, solutions may be obtained with almost any desired degree of accuracy.
The steady state three-dimensional airfoil theory is, however, in a much lower state
of development. For most engineering problems the "lifting line" theory as developed
by Prandtl and others is adequate to provide satisfactory results; however, for certain
other problems, such as the flow near a wing tip, the effects of sweepback or of yaw,
or the lift of a low aspect ratio wing, the lifting line theory cannot be used. At this
time there have been only a fairly small number of solutions of finite wing problems
in which lifting surfaces rather than lifting lines have been used and which may thus
be used to throw light on these essentially more complicated problems. The best
known of these lifting surface theories are those due to Blenk,1 Kinner,2 Krienes,3 and

Bollay.4 As the number of such solutions is so
limited almost any special solution involving a
lifting surface is of interest.

, . -, From an analytical viewpoint, probably the
U j I   \ %x simplest lifting surface problem which has not

yet been investigated is that of the axially sym-
metric flow past a ring airfoil as shown in Fig. 1.
This flow is especially simple as the vortex lines
in the lifting surface are circular rings and there
are thus no trailing vortices. The particular
purpose of the present paper is to discuss the
differences between this problem and the cor-

Fig. 1. Ring Wing in a uniform flow. reSponding two dimensional problem. In addi-
tion to its intrinsic interest in the theory of the

"anti-drag" cowl, the ring airfoil problem possesses a general interest insofar as it
demonstrates, at least qualitatively, some of the effects of dihedral on the lift dis-
tribution of a wing.

* Received Feb. 19, 1944.
1 Blenk, H., Zeit. f. angew. Math. u. Mechanik, S, 36 (1925).
2 Kinner, W., Ingenieur Archiv, 8, 47 (1937).
3 Krienes, K, Zeit. f. angew. Math. u. Mechanik, 20, 65 (1940).
4 Bollay, W., Zeit. f. angew. Math. u. Mechanik, 19, 21 (1939); also J. Aero. Sci., 4, 294 (1937).
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2. The vector potential. The mathematical analysis of this problem may be con-
veniently carried out by the method of the vector potential. Since the equation of
continuity in an incompressible fluid is simply

div q = 0, (1)

the velocity vector q may be written as the curl of a vector potential A or

q — curl A. (2)

By the Helmholtz decomposition theorem the vector potential may be subjected to
the restriction that

div A = 0. (3)

The differential equation for the determination of the vector potential is found by
curling Eq. (2). This gives

V2A = — curl q = — £1. (4)

If the vorticity SI is a given function, this is a Poisson equation for the determination
of the vector potential. The solution of this equation, which is well-known and may
be obtained by the use of Green's theorem, is

1 r dv= — I ft —
4ir J r i

(5)

where the volume integral covers the entire region where the vorticity exists and
is the distance from the point at which the vorticity exists to the point P at which
the vector potential is being computed. If the vorticity is in the form of a single
vortex filament of strength Y then

T r 1
A = - I — ds, (6)

4 ir J r i

where ds is an infinitesimal distance vector along the vortex filament. If there are
several vortex filaments the contribution from each one may be found by Eq. (6), and
these results must then be summed to obtain the vector potential.

3. The vector potential for a vortex ring. As the vortex filaments are all circles
for the axially symmetric flow past a ring
wing, the complete vector potential can easily
be obtained if the vector potential of a single
filament is known. For such a filament of
strength T and lying in the plane 2 = 0 (see
Fig. 2), it is obvious that the vector potential
is not a function of the meridian angle 0, and
it may be calculated at points in the plane
0=0. Since ds is in the plane 2 = 0, the vector
potential can have no 2-component. Further-
more, by considering two vortex elements,
one having the negative of the other's 0 co- FlG' 2- Vortex rinS-
ordinate, it is evident that the vector poten-
tial can have no radial component. The vector potential has thus only the component
Ae which is perpendicular to the meridian planes. By Eq. (6), this is
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ar r T cos 6 dd
Ae =   7 7- • (7)

2ir J o [a2 + r2 + z2 — 2ar cos 0]l/2

With the vector potential expressed in this form as an elliptic integral, it is rather
difficult to superimpose the vector potentials for a band of vorticity of radius a and
of chord c in order to represent the ring wing. A much more convenient form can
be obtained by the use of the Fourier integral. For an even function/(z), the Fourier
integral theorem states that

/(«) = cos &z<| J* f(t) cos (8)

Since A»is an even function of z, it follows that

a,r r°° r rx ( f cos edd ) "i
Ae =  | cos kz\ I cos ktl I   :—>dt \dk. (9)

it2 «/ o L J o Wo [a2 + r1 — 2 ar cos 9 + /2]1/2i J

Since6
cos (kt)fJ 0

;dt=Ko(kx), (10)
\ t^ + z2]1'2

the inner two integrals of Eq. (9) become, after inversion of the order of integration,

/ = /* Xo[^Vas + r2 — 2ar cos 0] cos 8 dd. (11)
J o

The addition theorem for the modified Bessel functions of the second kind (see Ref. 5,
p. 74) states that

/ 00

I Io(ka)Ko(kr) + 2 y. TJka)KJkr) cos nd if r > a.
Zo[V«! + r* - 2or cose] = | (12)

llo(kr)Ko(ka) + 2 y. I„(kr)Kn(ka) cos nd if r < a.
' n—1

Since the trigonometrical functions are orthogonal over the range 0^0^tt,

(irIi(ka)Ki(kr) if r > a.
(13)(ka) if r < a.

(ThikajKi
{■7rIi(kr)Kr

The vector potential for the vortex ring in the outer range where r>a can thus be
written as

ar r"
As =  | h(ka)Ki(kr) cos (kz)dk (r > a). (14)

t J o

For the inner range it is necessary to interchange the arguments of the two Bessel
functions.

4. The vector potential for a ring airfoil. A ring airfoil may be considered to be a
system of ring vortices of radius a and distributed over the chord c from z = — c/2
to z = c/2. If the strength of this vortex sheet is y(z0), then the vector potential
for r>a is

* Grey, Mathews and MacRobert, Bessel functions, Macmillan and Co., London, 1931, p. 52.
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a rcl* ( r°° )
Ae = — I t(zo)-S I h(ka)Ki(kr) cos k(z — z0)dk>dzo. (15)

7T J —c/2 1^0 /

If the vortex strength is known, Eq. (15), after inversion of the order of integration,
can conveniently be used to compute the vector potential or the radial or axial velocity
components, ur and u, respectively. From Eq. (2),

BA, 1 d
Mr = > ux = (rAe). (16)

dz r dr

The radial velocity is of the most interest as it corresponds to the downwash velocity
in the ordinary two-dimensional airfoil theory. The downwash at the ring airfoil,
r=a, is

a r. « ( rc'2 . )
«r = — | kIi(ka)Ki(ka) < I 7(20) sin k(z — Zo)dzo>dk. (17)

T J 0 W -c/2 '

5. Comparison with two-dimensional flat plate airfoil. If the airfoil shape is given,
the downwash uT is known, and Eq. (17) may be considered as an integral equation
for the determination of the vortex strength 7(zo). It is, however, an integral equation
of a difficult type. The importance of the curvature of the chord plane may be esti-
mated by comparing the downwash for some given vortex distribution with the cor-
responding two dimensional result. This process will be carried out for the vortex
distribution

/ c — 2zo
7(20) = A A/ ——— ■ (18)f c 2zo

In the two-dimensional case, this vorticity distribution corresponds to a flat plate
airfoil with its leading edge at z0= —c/2. The downwash is then constant over the
airfoil and equal to A/2. For this vorticity distribution it can easily be seen by use
of the transformation 2z0 = c sin 6 that

/c/2 IT7(20) sin k(z — zo)dzo = —Ac\J0(\kc) sin kz + J\{\kc) cos kz\. (19)
-c/2 2

The downwash velocity is thus

Mr = \Aca I kI\(ka)K\(ka) \Jv(\kc) sin kz + J\(\kc) cos kz]dk. (20)
J 0

It is of interest to note that the two-dimensional result can be obtained directly
from this by considering the limiting form as the radius of the ring becomes infinitely
large; for

lim [xh(x)Ki(x)} = (21)
Z-+00

so the downwash in the two-dimensional case is given by

Mr = \Ac f [Jo(\kc) sin (kz) + J\(\kc) cos (kz)]dk. (22)
J 0
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Table I
Comparison of F(x) and Fi(x)

0.1
0.5
1
2
3
4
5

F{x)

0.0493
0.2132
0.3402
0.4450
0.4762
0.4873
0.4921

Fi(x)

0.0132
0.2000
0.3637
0.4571
0.4800
0.4885
0.4926

F(x)-Fdx)

0.0361
0.0132

-0.0235
-0.0121
-0.0038
-0.0012
-0.0005

The first integral vanishes on the airfoil where z2 ̂ jc2/4 and the second is equal to 2/c
on the airfoil (see Ref. 5, p. 65); so in the two-dimensional case, for this vorticity dis-
tribution

Mr = \A (z2 ^ c2/4). . (23)

An exact evaluation of the integral of Eq. (20) is rather difficult; however, an ap-
proximate evaluation, valid for large values of a/c, may be obtained quite easily. If

F(x) = xI1(x)K1(x), (24)

a very close approximation to F{x) is given by

x2/2

" 3/8+1" ' (25)
It may be noted that the asymptotic expansions for F(x) and Fi(x) are the same up
through terms of order (x~2). It is shown in Table I and Fig. 3 that Fi(x) is a good
approximation to F(x) even for small values of x.

0.6

0.4

O.Z —

o / 2 , J <

Fig. 3. Comparison of F(x) and Fi(x).
Since

3/16F i(x) — | =   , (26)
3/8 + x2

an approximate expression for Am, the difference between the ring airfoil downwash
of Eq. (20) and the corresponding two-dimensional case is given by
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rx r dk
Aw = — (3/32)Ac I [Jo{\kc) sin kz + Ji{\kc) cos kz\ • (27)

J o 3/8 + a2£2

Let A=£c/2, a — \/3/32c/a and fi = 2z/c. Then

d\
o X2 + a2

On the airfoil where /32^1, this gives (see Ref. 5, p. 78)

Au = — §Aa2 f |7o(A) sin j3X + 7i(X) cos /3X]
J 0

(28)

Au = \A [a cosh (afi)Ki(cc) — a sinh (af))K&(a) — l], (29)

The ratio of the change in downwash to the two dimensional downwash is
2{Au)/A. For a = 0.02 and 0.20 corresponding to a/c = 15.3 and 1.53 respectively,
this ratio is given in Table 2 for the leading edge (j3 = — 1), the center of the airfoil
(|3 = 0), and for the trailing edge Q3 — 1).

Table 2

Values of 2(A«)/y4 for the ring airfoil

a/c

0=-l
0-0
0-1

0.02

15.3

0.0009
-0.0009
-0.0023

0.20

1.53

0 .0451
-0.0448
-0.0963

As the downwash velocity is determined by the slope of the camber line, the airfoil
camber required to produce the lift distribution of Eq. (18) may be computed by in-
tegrating the downwash velocity. The camber lines
for a/c = 1.53 and for the two dimensional case are jivo
shown for comparison in Fig. 4. */c*a> A/*ron

6. Conclusions. From Table 2, it is apparent ^
that the effects of the curvature of the chord plane — <
of the ring airfoil are negligibly small if a/c = 15.3

... ,, , . , , - , , ri t- Fig. 4. Airfoil profiles having the same
while they are fairly large for a/c=1.53. From vorticity. See Eq. (18).
Fig. 4 it appears that the lift of a ring airfoil having
a constant angle of attack across the chord would be somewhat more than that of
the corresponding two dimensional airfoil and the lift is shifted away from the leading
edge toward the center of the airfoil.

It seems reasonable to suppose that the changes at any given section of the ring
wing are caused primarily by the vortex elements near that section. These results
may thus be applied in estimating the effects of the dihedral of a wing on the lift
distribution over the wing's surface. This indicates that if the curvature of the chord
plane is small, as is normally the case, no appreciable changes in the lift distribution
need be expected; however, if the radius of curvature of the chord plane is of the same
order as the chord, fairly large effects may be expected. This should be particularly
noticeable near the vertex of a cranked wing.


