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THE TREATMENT OF DISCONTINUITIES IN BEAM
DEFLECTION PROBLEMS*

By C. L. BROWN (Purdue University)

The multitude of methods of determining the deflections of beams all stem from
the fundamental differential equation
2
o=, M
dx* EI
where the abscissa x is measured along the axis of the beam, and y denotes the deflec-
tion, M the bending moment, and EI the bending stiffness. The most obvious method
of determining y is direct integration of (1). However, in most cases the right hand
side of (1) is but sectionally analytical. A differential equation of the form (1) is then
written for each section of the beam. When these equations are integrated, two con-
stants of integration appear for each section. The evaluation of these constants of
integration, though elementary, is extremely cumbersome.
It is possible to avoid this sectionalizing treatment through the use of Heaviside’s
unit step function, well known from operational calculus. This function is defined as
follows:

0 for x<ea,
H.(x) = 2
) {1 for x> a. @
It can readily be seen that
H, if a>0d,
HaHb = { . (3)
Hb if a<b.

Furthermore, if #(x) and v(x) are analytic, the continuous solution of

9 = u(x) + Hoo(x — a)
dx

is given by

y = f "W + H. f T e@d + €, @)
[] 0

where C denotes a constant of inte-
gration.

The use of the unit step function X
——

in the analysis of beams with concen-
trated loads is best shown by an ex-
ample. The bending moment of the
beam in Fig. 1 can be written as Ry Re

FiG. 1.
d%y

EI—=M=—M1+R1x—H.,P(x—a).
dx?

* Received Aug. 26, 1943.




350 NOTES [Vol. I, No. 4

Integrating according to (4) and taking account of the fact that slope and deflection
vanish for x=0, we find

d
EIE)-’ = — Mz + }Ria® — }H P(x — a)? (5)
X
and
Ely = — $M1a* + }Ryx® — 3H.P(x — a)’. (©)

Both slope and deflection are zero at x=1. Thus, from (5) and (6)
— M+ 3R — 3P =0, — M2+ ERJ® — 3Pb® = 0.
Solving for M; and Ry,
M, = Pab?/I>, R, = Pb*3a + b)/13.

The deflection is then given by

Pab? Pb2(3a+b P(x — a)?
Ely = — T PUGetd) o P
2]2 6B 6

P In order to illustrate the use of the unit
step function in the analysis of beams with sec-
b b tionally constant moment of inertia, we con-
I - 1/ 2 sider the beam shown in Fig. 2. The reciprocal

! L of the bending stiffness can be written as

Qa
1 1
! — =—[1+ H,]
P P e
> 5 EI EI,
F1G. 2. and the bending moment as
Px
= —5— - PHb(x - b).
Thus, p
d? x
EL Y =14 H.,][—— — PHy(x — b)]
x? 2
or, considering (3)
v Px P N
EI, i —2—+ 5 [Ho(x — @) + aH,) — PHy(x — b) — PHo(x —b), (7)
x

in which the second term on the right hand side has been written in this particular
form in order to facilitate the application of (4). Integrating (7) we obtain

Px3 P (x — a)? (x — a)?
ElLy = + —[H,,—6—— + aHa—z—]

12 2

_(i__b)s_ — PH, (_x_——b)3 + Cix + C.. (3)

— PH
i 6
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The deflection is zero at x=0 and x=1J. The application of these conditions to (8)
yields

P
C, = —F(6b3—3a2b+a3) C; =0.

If, in addition to concentrated loads, the beam carries loads which are uniformly
distributed over certain sections, the treatment is similar.

A VARIATIONAL PRINCIPLE FOR A STATE OF COMBINED
PLASTIC STRESS*

By G. H. HANDELMANT (Brown University)

In a recent paper! M. A. Sadowsky has stated a heuristic principle of maximum
plastic resistance which he has applied to several states of combined plastic stress.
The principle states that “among all statically possible stress distributions (satisfying
all three equations of equilibrium, the condition of plasticity, and boundary condi-
tions), the actual stress distribution in plastic flow requires a maximum value of the
external effort necessary to maintain the flow.” W. Prager, in a contribution to the
discussion of this paper?, has shown that the principle can be so interpreted as to lead
to the correct differential equation for a beam under combined torsion and tension.
-This note is concerned with an accurate statement of the principle together with a
proof of its validity for the case of a beam in a perfectly plastic state under combined
torsion and bending by couples, the cross-section of the beam having an axis of sym-
metry. Specifically, we shall prove the following variational principle for such a sys-
tem.

Among all statically possible stress distributions in a beam under a given torque
(satisfying the equations of equilibrium, the condition of plasticity, and boundary
conditions), the actual stress distribution when plastic flow occurs is the one for which
the bending moment is stationary.

Let us choose the coordinate axes in the following fashion. y lies along the axis of
symmetry of the cross-section, z passes through the center of gravity of the cross-
section and is parallel to the generators of the cylindrical beam, and x is perpendicular
to y and 2. We assume that the strain velocities, v,, v, 7, are given by the same ex-
pressions as in the case of an incompressible elastic material; i.e.,

v, = — wyz + 30xy,
9y = wxz — 20(x? — y? — 232),

v, = ow(x,y) — Oyz.

* Received Sept. 9, 1943.

t This note was prepared at the suggestion of Professor W. Prager while the author was a participant
in the Program of Advanced Instruction and Research in Mechanics at Brown University and was pre-
sented to the American Mathematical Society on Sept. 12, 1943 under the title of Oz a principle of M. A.
Sadowsky.
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