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ELECTROMAGNETIC WAVES IN A BENT PIPE OF
RECTANGULAR CROSS SECTION*

BY

KARLEM RIESS
Tulane University

The analysis of electromagnetic wave propagation in a bent pipe of rectangular
cross section, (x = R, x = R+a, y = 0, y = b), is based on the Maxwell field equations,
expressed in cylindrical coordinates (r, 6, y) (Fig. 1). As in the case of the straight
pipe,1 the time variation is given by the exponential ewhere co is the angular fre-
quency. The angular variation is given by e~xe, where 2 is the propagation constant
for the bent portion. The equations may be written

— 2 Ey — rdEe/dy + rju>p.Hr = 0,

dEr/dy — dEy/dr + jcopHe = 0,

rdEe/dr -\- Ee 2Er -f- rjuplly = 0,
— 2 Hv — rdHe/dy — rjtotEr = 0,

dHr/dy - dHy/dr - jueEe = 0,

rdHe/dr -(- He -|- SHr — rjoitEy — 0,

rdHr/dr + Hr - 2He + rdHv/dy = 0,

rdEr/dr + Er — 2-Es + rdEv/dy = 0.

In (1) He, Hr, Hy, Ee, Er and Ey are the components of magnetic and electric field,
« is the electric inductive capacity, and p. the magnetic inductive capacity. The elec-
trical conductivity, c, and charge density, p, are assumed to be zero.

The field components Hr, Hv, Er and Ey may be expressed in terms of He and Ee by
various combinations of the equations (1). These give

Hr(Gr2) = - 2rdHe/dr - 2He - r2juedEe/dy, (2a)

Hy(Gr2) = — S rdHe/dy + rjcotEe + r2jwtdEe/dr, (2b)

Er(Gr2) = — 2 rdEe/dr — 2 Ee + r2jundHe/dy, (2c)

Ev(Gr2) — — UrdEe/dy — rjwpHe — r2joip.dHe/dr, (2d)
where

(Gr2) = 22 + ref-

using the last two of Eqs. (1) and Eqs. (2), Hr, Hv, Er and Ey may be eliminated
and equations in He and Ee readily obtained.

d 1 d(rHe) 1 d2He rjut dEe dG~l
—     +F9+G"1 + -   - = 0, (3a)
dr LGr dr J dy2 2 dy dr
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d T 1 d(rEe) 1 d2Ee rjun dHe dG'1
— I     + Ee + G'1 ±S —   = o. (3b)
dr LGr dr J dy2 2 dy dr

The boundary conditions for this case are

y = 0, y = b. Ee = 0, Er = 0.
(4)r = R, r = R + a. Ee = 0, Ey = 0.

A more useful form may be obtained from (2d):

y = 0, y = b. Ee = 0, Er = 0.
r = R, r = R + a. Ee = 0, d(rHe)/dr = 0.

By considering Ee and He as functions of y and r, these conditions establish the
dependence of Ee on sin kvy, and He on cos kyy, where kv = nir/b, n being an integer.
By substituting

Ee(r, y) = Ee(r) sin kyy, He(r, y) = Ht(r) cos kyy,

in (3) and simplifying, equations in Ee and He as functions of r alone are obtained.

d2He dHe
 + A (r)  + B{r)He + eC(r)Ee = 0, (6a)
dr2 dr

d2Ee dEe
 + A(r)  + B(r)Ee + vC(r)H, = 0, (6b)
dr2 dr

where the coefficients A(r), B(r) and C(r) have the values

1 222 1 222
A(r) =—+ — =— +

r Gr3 r r(S2 + r2cdV«)

1 222 22 - 1 22
B(r) = G — ky 1 = b — kl -f-

C(r) =

r2 Gr4 r2 r\ 22 + r2coVe) (7)
2] ky(jJ2 2J k yCC2

Gr2 (22 + r2coV«)

Y, Equations (6a) and (6b) show that Ee
and He are not independent in the bent
pipe. Furthermore, Ee and He do not
vanish in this case, hence the methods
of solution used for the straight pipe
fail. Ee and He are not expressible in

"/* " ~Ab terms of Bessel functions. One possible
 fr' / ,j. Q ./ J ~z method of solution of these equations,

/ / namely to substitute
R ' / /

+ (eY^Ee,
*2 = WHe - (e)ll2Ee,

^ and thus to obtain separated equations
in 4>i and 4>2. is incorrect because the
boundary conditions (4) are not satis-
fied.

Fig. l Equations (6a) and (6b) have been
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solved completely by a method of approximation, using the theory of the
Schrodinger equation with perturbations. Only the zero order and first order terms
are considered. This does not affect the generality of the solution, because in
practice the radius of curvature of the pipe, R, may be chosen very large compared to
the constants of the equations and to the dimension a of the pipe.

To rewrite (6a) and (6b) in the familiar Schrodinger form, let.

(rHe)/R = 0,
r = R + s = R( 1 + s/R), 0 < s < a, (8)

7 = S/R.
Thus

d2P/ds2 + fi(s)d/3/ds + g(s)p + h(s)eEe = 0, (9a)

d*Ee/ds2 + f2(s)dEe/ds + g(s)Ee + h(s)fiHe = 0. (9b)

The coefficients, to the first approximation in R"1, are given by

Ms) = R~K- 1 + 272/^2), Ms) = S~K 1 + 2t2/^2).

g(s) = K* - k\ - 2y*s/R = kl - 2y*s/R,
k(s) = 2jkywy/RK\

where

K2 = y* + coVe = kl + kl

Continuing the approximation, Ee and /3 may be written as

Eo = (Ee) o + R^iEe) i + • • • , /S = /3o + 1 + • • • , (10)

and the perturbation of the angular coefficient for each case as

kl= kl + R~xei for Ee, k\ = kl + Rr^hi for j8. (11)
By substituting (10) and (11) in (9), the zero order and first order approximations

may be written separately. For Ee these are

d2(£e)o
+ k2.(E,) o = 0, (12a)

ds2

d2(Ee) i d(Ee)o

ds2 ds
[1 + 2y*/K2} + {Ee)ik\

2j kyyo)Li( He) o
+ ei(Et)o - 27M£«)o + —     = 0. (12b)

RK

The zero order equation (12a) has the same form as the equation for the straight
pipe, with the solution

(Ee)o = Em,n sin kss, (13)

where m and n are integers.
Similar equations may be written for /3, giving

r
/3o = lim — (He)o = Hm,n cos k,S = (He)o■ (14)

R
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Eq. (12b) may be rewritten as

?\2( J?
 ^ + fi(Ee) i = - ey{Ee)„ + 2yh{Ee)0

ds2
d(Ee) o 2jkyO))iy(He)o

- (1 + 2y2/ K2)  ^ • (15)
ds A2

This is the general form of the Schrodinger equation with perturbations, where the
usual perturbation factor X is equal to 1 /R.

By using the orthogonality condition for the Schrodinger theory, the value of ei
may be readily determined:

/» o /% a
(—ei + 2y2s)El,n sin2 ksSds — I (1 + 2y2/K2)k,Eitn cos kss sin kasds

o J 0

/» a 2jkuwnyK~2Hm,nEm,n cos k,s sin k„sds = 0.
o

Therefore
ei = y2a.

By using this value and (13), the first approximation (15) may be solved for (Eg)u
The solution, satisfying the boundary conditions, is given by

(Ee)i = Em,„ cos £,s[(72s)(a — s) (2 &»)-']

+ Em,n sin ̂ ^(i)(2^)->|72 - £l + *2J J

— Hm,n sin k^\(jkysw/iy)(.R"2 £s)-1 ]. (16a)

In like manner, from the /3 approximation equations,

hi = y2a.

Since ei = h\, there is no change in the angle variable during the perturbations. The
solution of the /3 equation, satisfying the boundary conditions, and corresponding to
(16a) is

/3i = Em,n cos k,s[(jkySoiey)(ksK2)^] — Em,n sin kas[(jkywty)(klK2)-1}

+ Hm,n cos &.s[(V2)(l - 2y2/K2 + 72/^)]

+ Hm,n sin k,s[(,2k.)-\- y2as - 1 + y2s2 + 2y2/K2 - y2/k*)\. (16b)

The complete solutions of (6a) and (6b), including both the zero order and first
order approximations, may be written as

Ee = {Em,n sin £ss[l + Cis] + Em,n cos £ss[s(a — s)c2]

— Hm,n sin &ss[juc3.s]} {sin kyye'"'-™}, (17a)

He = \Hm,n cos &,s[l + Cij] — Hm,n sin £s.r[s(a — s)c2 — c4J

— Em,n sin kss\ecz/ka\ + Em,n cos &„s[ec3.?]} {cos kvyeiul-™}, (17b)
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where
<y2 ^ ry 2 /y2

Cl ~ 2Rk\ 2R RK2' C2 ~ 2Rks

^ _ jky^y c _ — 72 1 72

By using (2) and the approximations (8) and (10), the components Hr, Hy, Er
and Ey are seen to become

— K2Hr = |Hm,n sin &ss[ — yks{\ + CiS — s/R + 2y2s/RK2)

+ c2(2s — a)y — jwfiiCskys]

+ Hm,n cos + R"1 — c2s(a — s)£s} + y£sc4]

+ -Em.n sin kss\jwtky(\ + Ci^ + 2y2s/RK2) — ksc3yts\

+ Em,n cos kss\jwtkys{a — s)c2]}cos kyye'°''~ie, (18a)

K2Hy = {Em,n sin kss[ja>tci — kss(a — s)c2 + i?-1} — (c3&/ye)(£s)-1]

+ Em,n COS kss\jo3t £s(l + C\S + 2y2s/RK2) — jue(2s — a)c2 + kyc3yts\

— Hm_n sin kss\jwfitcz + yky{s(a — s)c2 — c4}]

+ Hm,n cos &ss[ — jwntksczS + yky(l + CiS — s/R + 2y2s/ RK2)]}

•sin kx,yei'*t~se, (18b)

— K2Er = {Emt„ sin £ss[y{c! — c2s(a — s)ks + R~1} — (kyCzjwi±<L)(ke)~l)

+ Em,n cos &ss[y&8(1 + — s/R + 2y2s/RK2) + jwnekyc3s — c2y(2s — a)]

— Hm,n sin k,s[cgyn + junkv{s(a — s)c2 — c4}]

+ Hm,n cos kss[jwfiky{l + cjj + 2y2s/RK2) — ksc3yns}}

•sin kyye'"'~le (18c)

— K2Ey = \Emi„ sin kss\yky{\ + cis — s/R + 2y2s/RK2) — c3ksjcofxts]

+ Em,n cos kss[ykys(a — s)c2]

+ 3m,n sin &s.s[ — jufiks{\ + Ci5 + 2y2s/RK2) + junc2(2s — a) — kyc3syp]

+ Hm,n cos kss[jwix{ci — kas(a — s)c2 + i?-1} + junk,ct]}

•cos kvye''"~:se. (18d)

The solutions for the field components (18) satisfy the Maxwell field equations (1)
within the approximation conditions imposed on the solution of the problem.

For the special cases of IIm,„ and Em,n when one of the integers m or n is zero,
the components may be obtained from (18). For m = 0 and n not equal to zero:

Ee = H0,n\jo>iJ.ykys(a — s)/i?.K^!]sm kyyeiwi~se,

He = 7/o,n[l — s/R — y2as2/2R + 72s®/3i?]cos kyye'"^"9,

KmHr = Ho,n[ys{a — s)R~1 (u2fiekl/Km + 72)]cos kyye'"1-"9,

KlHy = Ho.niKyR-'i- a^ta/Kl + R - y2as2/2 + 7253/3)]sin kyye1"^2*,

— KmEr = Ho.ntiunkyEr1 {y2a/Kl + R — s — y1asi/2 + -y2^3/3)]sin kyye"9,

Ey = 0,
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where

Km = (A2)m_0 = kl + y2a/R.

For m not equal to zero, n = 0:

Ee = 0,
He = \Hm,o cos k8s[l + cis] — Hm,0 sin kss[(a — s)c2s — c4]}cos kyye1'"'^9,

— Kin, = {Hm, o sin kss[ciy{2s — a) — 7&s(l + Cjj — s/R + 2y2s/RKl) ]

+ Hm,o cos kss[y{ci + R~x — c2s(a — .s)&s} + ^sc47]}cos kyye'""l~1'\

Hv = 0, Er= 0,

— KlEy = {Hm,o sin k8s[ jwnks( 1 + CiS + 2y2s/RKl) + juiiCi{2s — a)]

+ Hm,a cos k3s\jwii{ci — kss(a — s)c2 + R'1} + jccnCik3]cos kvye"*'~"e,

where the c\, c%, cz, are calculated for n vanishing, and

Kl = (K*)n= o = kl + t *a/R-

It should be noted that both the E0,n and Em,0 are missing.
A consideration of the continued propagation of E and H waves from a straight

pipe into a bent pipe yields some interesting results. A pure Em-n or Hm,n wave in the
straight pipe will be reflected, partially, at the junction with the bent pipe. After
reflection the amplitudes are proportional to a/R, and intensities to a2/R2, hence, for
the first approximation, the reflected portion may be neglected. Thus a pure Em,n or a
pure Hm,n wave in the straight pipe may be traced into the bent pipe, where it will
become a mixed E and H wave.

For a mixed E and H wave in the straight portion, the intensities are proportional
to a/R and must be considered. A mixed E and H wave in the straight pipe, because
of the reflected portion at the junction, sets up an undetermined condition within the
pipe, not predictable from the results of this paper.

If the propagation constant is measured along the center line, a/2, of the bent
pipe, there is no change in its value from that of the straight pipe.


