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ELECTROMAGNETIC WAVES IN A BENT PIPE OF
RECTANGULAR CROSS SECTION*

BY

- KARLEM RIESS
Tulane University

The analysis of electromagnetic wave propagation in a bent pipe of rectangular
cross section, (x=R, x=R+a, y=0, y=>5), is based on the Maxwell field equations,
expressed in cylindrical coordinates (r, 0, ¥) (Fig. 1). As in the case of the straight
pipe,! the time variation is given by the exponential e’“¢, where w is the angular fre-
quency. The angular variation is given by e, where 2 is the propagation constant
for the bent portion. The equations may be written

— ZE, — rdEy/dy + rjouH, = 0,
dE,/dy — 3E,/dr + jwpHs = 0,
rdEy/0r + Ey + ZE, + rjouH, = 0,
— SH, — 19H,/dy — rjweE, = 0,
0H,/0y — 0H,/dr — jweEy = 0,
rdH,/dr + Hy + ZH, — rjweE, = 0,
rdH,/dr + H, — ZHy + r0H,/dy = 0,
r0E,/dr + E, — ZEy + rdE,/dy = 0.

(1)

In (1) Hy, H,, Hy, Ey, E, and E, are the components of magnetic and electric field,
¢ is the electric inductive capacity, and u the magnetic inductive capacity. The elec-
trical conductivity, o, and charge density, p, are assumed to be zero.

The field components H,, Hy, E. and E, may be expressed in terms of Hy and E, by
various combinations of the equations (1). These give

H,(Gr®) = — 2rdHs/dr — ZHys — r*jwedEo/dy, (2a)
Hy(Gr?) = — ZrdH/dy + rjweEs + r2jwed Eo/0r, (2b)
E,(Gr?) = — Z2rdEs/dr — ZEs + r*jwudH,/dy, (2¢)
E Gr®) = — ZrdEy/0y — rjwuHs — r*jwudHe/dr, (2d)

where .
(Gr?) = 22 + r%0%e.

Using the last two of Egs. (1) and Egs. (2), H,, H,, E, and E, may be eliminated
and equations in Hj and E, readily obtained.

a1 a(rH, 3°Hy rjwe O0E, 0G™!
e T S, (32)
arlLGr or ay? Z 9y or
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[ 1 a(rEo) 4B 4G 92E, B rjwu 0H, «3G—‘= 0. (3b)
or LGr dy? Z 9y or
The boundary condmons for this case are
y=0, y=2b Ey=0, E.=0. @
r=R, r=R+a. Ey=0, E, 0.
A more useful form may be obtained from (2d): ’
y=0, y=0b. Ey=0, E, =0. )

r=R, r=R+a. Ey =0, 0(rHg)/dr = 0.

By considering Ey and Hj as functions of y and 7, these conditions establish the
dependence of E; on sin kyy, and Hy on cos k,y, where k,=nm/b, n being an integer.
By substituting

Eo(r, y) = Eo(r) sin kyy,  Ho(r, y) = Ho(r) cos kyy,
in (3) and simplifying, equations in Eo and Hpy as functions of 7 alone are obtained.
92H,

Py + (r) + B(r)Hy + eC(r)Es = 0, (6a)
92E,
Py + (r) + B(r)Ey + uC(r)Hy = (6b)
where the coefficients A(r), B(r) and C(r) have the values
A0 1 + 2z 1 + 232
= 3 r(22+1'2w2ye)’
50) " +222 ikl SO 23
r)=G— ky——+ — wiue — _—
Grt r? He Y 7322 4 r2wiue) ’ ©)
- 27 kwZ 25 k0w
oy =Lem T
Gr? (22 4 r2wue) B
Y Equations (6a) and (6b) show that E,
.. and Hj are not independent in the bent
" pipe. Furthermore, Es and Hy do not
vanish in this case, hence the methods
of solution used for the straight pipe
fail. Es and Hjy are not expressible in
, —“'7—7 b terms of Bessel functions. One possible
J R . a z method of solution of these equations,
WA 7 namely to substitute
/ e -
. 7
ROV ¢1 = (1)'?Hy + (€)'/2Ey,
/T X ¢2 = (W)2Hy — (12E,
¥

and thus to obtain separated equations
in ¢1 and ¢, is incorrect because the
boundary conditions (4) are not satis-
X fied.

Fic. 1 Equations (6a) and (6b) have been
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solved completely by a method of approximation, using the theory of the
Schrédinger equation with perturbations. Only the zero order and first order terms
are considered. This does not affect the generality of the solution, because in
practice the radius of curvature of the pipe, R, may be chosen very large compared to
the constants of the equations and to the dimension a of the pipe.

To rewrite (6a) and (6b) in the familiar Schrédinger form, let.

(rHo)/R = B,
r=R+s=R{l+ s/R), 0<s<a, (8)
v=3/R.
Thus .
32B/0s% + f1(s)8B/ds + g(s)B + k(s)eEy = 0, (9a)
92Es/3s? + f2(s)0Ee/ds + g(s)Ee + h(s)uHs = O. (9b)

The coefficients, to the first approximation in R~1, are given by
fi(s) = R°N(— 1+ 2¢9%/K?,  fils) = R7'(1 + 2v*/K?),

g(s) = K2 — k} — 24%/R = k% — 29%s/R,

h(s) = 2jk,wy/RK?,
where

K? = 4% + wlue = k2 4 kL
Continuing the approximation, E; and 8 may be written as
Ey = (Eo)o+ R E)1+ - -, B=Bo+R "B+, (10)
and the perturbation of the angular coefficient for each case as
Bl = k! + Rle; for E,, B2 = k24 R, for B. (11)

By substituting (10) and (11) in (9), the zero order and first order approximations
may be written separately. For E; these are

92(E
(B + ki(Ee)o = 0, (12a)
ds?
92(E I(E
( 0)l+ ( 0)0 [1 + 272/K2] + (Eo)lkf
as? as
2 kyyon(H
+ BN, — 2B + I _ (12b)

The zero order equation (12a) has the same form as the equation for the straight
pipe, with the solution

(Es)o = Ep,n sin ks, (13)
where m and 7 are integers.
Similar equations may be written for 8, giving

Bo = lim % (Ho)o = Ho.n cos kes = (Hoo. (14)
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Eq. (12b) may be rewritten as

92(Ep),
ds?

+ K(Eo)1 = — ex(Ea)o + 2v%5(Es)o

‘ d(E 27k H
— (1 + 29/K?) (Es)o _ -] vouy(He)o . (15)
as K2

This is the general form of the Schrédinger equation with perturbations, where the
usual perturbation factor N is equal to 1/R.

By using the orthogonality condition for the Schrédinger theory, the value of ¢,
may be readily determined:

f (— €1 + 274%5)E2 , sin? k,sds — f (1 + 2%/ K2 k,EZ . cos ks sin k.sds
0 0 .

— f 2jkywpyK2H py nEm,n COS k,s sin k,sds = 0,
[]

Therefore
€1 =7y 2a.

" By using this value and (13), the first approximation (15) may be solved for (Es):.
The solution, satisfying the boundary conditions, is given by

(E)1 = Em,n cos ks[(v%5)(a — $)(2k)7]

. 2 2
+ Busin ks @8 {22 = [ 14+ 5]} ]
— Ho o sin ks [(GRyswpy) (K2R,)1]. (16a)
In like manner, from the 8 approximation equations,
hl = ‘720.

Since e; =1, there is no change in the angle variable during the perturbations. The
solution of the B equation, satisfying the boundary conditions, and corresponding to
(16a) is

B1 = Emn 08 kus[(jhuswer) (kaKD)] — Enm sin kus[(jhyoey) (BED)]
+ Humncos ks[(s/2)(1 — 29%/K? + */ k)]
+ Hp.o sin ks[(2k)"1(— v%as — 1 + 422 + 292/ K2 — 2/kD)]. (16b)

The complete solutions of (6a) and (6b), including both the zero order and first
order approximations, may be written as
Ey = {Epsin ks[1 + cis] + Em,n cos ks[s(a — s)ca]
— Ha,asin kys[ucss]) {sin kyyeiot—2} (17a)
Hy = {Hpncos ks[1 + ¢15] — Hmnsin ks[s(a — 5)¢; — ¢ ‘
— Eumnsin Ess[ecs/ k] + Emn cos kis[ecss]} {cos k,yeiat-20}, (17b)
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where
v? 1 2 vl
6= ——— — —— — , cy = ’
2RE2 2R RK? 2Rk,
Jhywy - 1 v
Cc3 = ’ Cy = - + .
RE.K? 2RE 2Rk, RK2k,

By using (2) and the approximations (8) and (10), the components H,, H,, E,
and E, are seen to become

— KH, = {Hpmnsin ks[— yk(1 + c1s — s/R + 2y%s/RK?)
+ ¢2(2s — a)y — jopecskys]
+ Hou,n COS k,s['y{cl 4+ R — ¢s(a — s)k,,} + ykycs)
+. Em,n sin kes[joek,(1 + c15 + 2v2%5/RK?) — kcayes]
+ Eonn cOs kos[jwekys(a — s)cz]}cos kyyeivt—320, (18a)
K2H, = {Epn, sin ks[joec; — kos(a — s)cz + R} — (cskyye) (k)]
+ Enmp 08 kos[jwek,(1 + c15 + 2v%/RK?) — jwe(2s — a)cz + kycyves)
— Ho,p sin kos[jopecs + 'yk,,{s(a — $)ca — 64}]
+ H,p cOs kos|[— jopekicss + vhy(1 + c1s — s/R + 2v%/RK?)]}
-sin kyyeiot—328, (18b)
— K2E, = {Epn,sin ks[y{ci — cos(a — s)ks + R} — (kycsjope) (k)]
+ En.ncos Bs[yk(1 4 c1s — s/R + 2v2s/RK?) + jouek,css — cay(2s — a)]
— Hp o sin kes[cayn + jouky{s(a — s)ca — ca}]
+ Hop cOs kos[jopk,(1 + cis + 2v2%5/RK?) — k,cs'y;.cs]}
-sin k,yeivt—2 . (18c)
— K2E, = {Ep,.sin ks[yk,(1 + c1s — s/R + 2y%5/RK?2) — csh,jopes]
+ Eom,n cos kes[ykys(a — s)cz]
+ Hopoosin kys[— jopk(1 4+ c15 4 2v%/RK2) + jopcs(2s — @) — kycasyu)
+ Hopomcos kes[jop{ci — ks(a — ez + R} + jopkicd}
-cos kyyeivt—20, (18d)

The solutions for the field components (18) satisfy the Maxwell field equations (1)
within the approximation conditions imposed on the solution of the problem.

-For the special cases of H,,, and E,,, when one of the integers m or = is zero,
the components may be obtained from (18). For m =0 and # not equal to zero:

Ey = Hy . [jouyk,s(a — s)/RK2]sin k,yei‘“"}:’,
Hy = Ho.[1 — s/R — y%s?/2R + v*3%/3R]cos k,,yei““z’,

KiH, = Ho,[ys(a — s)R™ (wuekl/Km + v?) ]cos kyye’ >,

KiH, = Ho,[kyR™ (— wluea/K2 + R — v2as?/2 + 425%/3) ]sin kyye’ "™,

— KLE, = Hy,[jopk, R (v2a/K% + R — s — y?ast/2 + y?s3/3) Jsin kyye™' ™,
Ell = 01
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where
Knm = (K)moo = k2 + v%/R.
For m not equal to zero, n=0:
E; =0,

Hy = {Hn,ocos ksl + c15] — Hposin ks[(a — 5)cos — cs]}cos kyyeiot—2,
2

— K.H, = {Hpn, sin ks[cay(2s — @) — vk(1 + c1s — s/R + 2v%s/RK2)]
+ Huyocos ks[y{cy + R — cos(a — $)ks} + kcay]}cos kyye™™,
H,=0, E =0,

— K2E, = {Hpn, sin ks[— jouk(1 + c15s + 29%/RK2) + joucs(2s — a)]
+ Hopyo cos ks[jop{ci — ks(a — s)ca + R} + jwucak,]cos kyye™ >,
where the ci, ¢, ¢, ¢4 are calculated for # vanishing, and
K% = (K*a0 = k. + v%a/R.

It should be noted that both the E,,, and E, o are missing.

A consideration of the continued propagation of E and H waves from a straight
pipe into a bent pipe yields some interesting results. A pure En,, or H,,, wave in the
straight pipe will be reflected, partially, at the junction with the bent pipe. After
reflection the amplitudes are proportional to a/R, and intensities to a2/R?, hence, for
the first approximation, the reflected portion may be neglected. Thus a pure E,, , or a
pure H, . wave in the straight pipe may be traced into the bent pipe, where it will
become a mixed E and H wave.

For a mixed E and H wave in the straight portion, the intensities are proportional
to a/R and must be considered. A mixed E and H wave in the straight pipe, because
of the reflected portion at the junction, sets up an undetermined condition within the
pipe, not predictable from the results of this paper.

If the propagation constant is measured along the center line, a/2, of the bent
pipe, there is no change in its value from that of the straight pipe.



