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A STRAIN ENERGY DERIVATION OF THE TORSIONAL-
FLEXURAL BUCKLING LOADS OF STRAIGHT COLUMNS

OF THIN-WALLED OPEN SECTIONS*
BY

N. J. HOFF
Polytechnic Institute of Brooklyn

In the thin-walled open section columns of modern aluminum alloy aircraft tor-
sional buckling and combinations of torsional and flexural buckling are of consider-
able importance. The critical loads corresponding to these types of instability have
been calculated by Wagner,1 Kappus,2 Lundquist and Fligg,3 and Goodier4 through
integrating the differential equations of the problem. In the present paper the tor-
sional-flexural buckling loads are determined with the aid of the Rayleigh-Ritz-
Timoshenko method. This procedure obviates the derivation and integration of the
differential equations as well as the geometric considerations connected with what
Goodier termed "Wagner's hypothesis."

The equilibrium of a straight bar of a length L and a cross-sectional area A, loaded
axially with a compressive force of a magnitude aA distributed uniformly over the
end section, can be investigated by assuming that each section of the bar undergoes
a virtual displacement. The end sections of the bar are assumed to be restrained in a
manner which precludes translations as well as rotations about any axis perpendicular
to the end section, but which permits rotations about axes in the plane of the end
section and warping of the end section. Barring displacements that would change
the shape of the cross section (such displacements lead to plate- or shell-buckling),
the most general virtual displacement pattern of the bar can be represented by the
following infinite series:
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u — 2! an sin (mz/L), (la)
n= 1

00

v = ^2 bn sin (nirz/L), (lb)
n= 1

00

18 = J]c. sin (nirz/L). (lc)
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In these equations u is the virtual translation in the x-direction of a section of the
bar at a distance z from the bottom section, v that in the y-direction, and j3 the virtual
rotation of the section about its shear center. The x- and y-axes are parallel to the
principal axes of inertia, and pass through the shear center of each section. The dis-
placements of a section are shown in Fig. 1.

Fig. 1.

The increment dU of the strain energy because of the virtual displacements is

SU = hEIy f (d2u/dz2)2dz + %EIX f {dh/dz^dz
Jo Jo
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+ \GC I (dp/dz)2dz + iET I (d2(3/dz2)2dz. (2)
J 0 J 0

In Eq. (2) EIX and EIV stand for the bending rigidities of the bar when the bending
moment vector is parallel to the x-axis and the y-axis, respectively, and GC is the
torsional rigidity calculated from the Saint-Venant theory of uniform torsion. The
fourth term is due to the direct stress caused by non-uniform warping, and T is the
warping constant defined in the theory of non-uniform torsion of thin-walled open
sections. This theory is discussed in the previously mentioned references and in a
paper written by the author.6 Eq. (2) follows from the theory of non-uniform torsion
of thin-walled open sections and from the Bernoulli-Euler theory of bending, if the
strain energy due to shear associated with bending and that associated with non-
uniform warping are neglected.

6 Hoff, N. J., Stresses in space-curved rings reinforcing the edges of cut-outs in monocoque fuselages,
Journal Roy. Aeron. Soc., 47, 64 (1943).
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Because of the orthogonal properties of the trigonometric functions the integrals
indicated in Eq. (2) can be easily calculated:

00 00

W = (x4£/„/4Z,3) £ n'al + (**£/./4L») £ n'bl
n= 1 n=l

oo oo

+ (7T4£r/4L3) £ w*e2 + (tt2GC/4L) X w4c2. (3)
n=l n=l

The decrease —57 of the potential of the external forces is equal to the work 8W
done by them during the virtual displacements. The work dbW done by the infini-
tesimal force crdA is equal to the force times the shortening of the distance between
the end points of the fiber upon which it is acting. The shortening ALx,v of the dis-
tance between the end points of the fiber passing through a point x, y can be calculated
from the equation

ALIlB = i f [(dUx.y/dzY + (dvx,y/dz)2]dz. (4)
" o

It may be seen from Fig. 1 that for small displacements

ux, y = u — yi3, (5a)

Vx.y = v + xfi. (5b)

Upon substitution of the expressions of equations (1) and (5) into Eq. (4), integration
yields

/ALx,y = (ir2/^L) < X w2ff» + X n*bn ~ n2anc„
V 71=1 71=1 71=1

00 00 00 \

+ 2x^2 n2bncn + n2c\ + y2 X) r •
71=1 71=1 71= 1 J

(6)

The sum bW oi the work done by all the infinitesimal forces ad A is

5W = f aALx.ydA, (7)
J A

where the integral is extended over the total cross-sectional area. With
fA<rdA =P, the total compressive force,
JAydA =yt>A, the static moment of the section with respect to the x-axis

passing through the shear center,
JAxdA =XoA, the static moment of the section with respect to the j-axis

passing through the shear center,
JA(x2+y2)dA =JAr2dA =IP, the polar moment of inertia of the section with respect

to the shear center, and
P2 = Ip/A

equation (7) can be written as
/ oo oo oo

SW = (ir2P/4£) < n2al + Yj n2b\ — 2ya £ n2anc„
V 71=1 71=1 71=1

00 00

+ 2*o 2 n2bncn + p2 X w2<;2 f • (8)
71=1 71=1 /
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According to the principle of virtual displacements the bar is in equilibrium in
its original straight-line form if the change of the total potential 5(Z7+ V) = 8U— SW
is zero for any virtual displacement provided that first order small terms alone are
considered. Since both 8U (Eq. (3)) and SW (Eq. (8)) contain only second order
terms in the an, b„, cn, the original straight-line form is a configuration of equilibrium.
This equilibrium is stable only if the total potential increases, that is h(U-\-V) is
positive, for any virtual displacement. With the notation

N = ir 2EIy/L\ (9a)

Q = tc*EIx/L\ (9b)
R = tt2EY/L\ (9c)

the increment of the total potential can be written in the form
00

S(U + F) = (,r»P/4L)£ »2{ WKN/P) - l]a» + [n\Q/P) - 1 }bl
71=1

+ [n\R/P) + (GC/P) — p*]cl + 2y0ancn — 2 x0bncn). (10)

With the notation

An = n\N/P) - 1, Bn = n\Q/P) - 1,
Cn = n\R/P) + (GC/P) - p2, (11)

Pn Xot Gn yo,

Xn — A„a* -j- Bnbn + CnC* + 2Fnbncn + 2G„c„an (12)

the infinite sum on the right hand side can be written as The necessary and
sufficient conditions for its positive definite character are that all Xn for n — 1,2, • • •
must be positive definite. Necessary and sufficient conditions for this are

An >0, Bn > 0, AnBnCn - AJFl - BGl > 0 (13)
or,

n\N/P - 1) > 0, (14)
n\Q/P) - 1 > 0, (15)

P*[n\N/P) - 1 ][n\Q/P) - 1 ][(T/P) - l]
- xl[n\N/P) - 1] - ylW{Q/P) - l] > 0. (16)

Since inequalities (14)-(16) are necessary as well as sufficient conditions of stability,
the bar may buckle if any one of them is not satisfied. Neutral equilibrium prevails,
therefore, if any one of the following "buckling conditions" is fulfilled:

n2(N/P) -1 = 0, (17)
n*(Q/P) -1 = 0, (18)

P*[n\N/P) - 1][n\Q/P) - 1 ][{T/P) - 1]

- x\[n\N/P) - 1] - ylW{Q/P) - l] = 0. (19)
It is easy to prove that the original straight-line form of the bar corresponds to

stable equilibrium if the compressive force P is sufficiently small, since by decreasing
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P the first three terms on the right hand side of Eq. (12) can be made positive and
large as compared to the last two terms. In the investigation of the stability of the
bar under increasing values of P it is to be noted that if any of the inequalities (14)—
(16) is satisfied for n = k, it is also satisfied for n = k+p, where k and p are arbitrary
positive integers. Consequently the bar is stable if, and only if, inequalities (14)-(16)
are satisfied when n = 1. The smallest critical load can be calculated from Eqs. (17)-
(19) if 1 is substituted for n. This load alone is of practical importance unless geo-
metric constraints (for instance rigid end fixation or additional supports between the
ends of the bar) prevent displacement corresponding to the first terms of the Fourier
series in Eqs. (la)-(lc). In such a case the smallest value of n that is compatible
with the restraints must be used in Eqs. (17)—(19) for the calculation of the buckling
load, for instance « = 2 when the ends of the bar are prevented from rotating and
warping.

Eqs. (17)—(19) permit a discussion of the various types of buckling of bars of
different cross section. With an asymmetric section and yo5^0. In this case
with increasing P a value is reached at which Eq. (19) is fulfilled while the left sides
of Eqs. (17) and (18) are still greater than zero. The buckling load P can be calculated
from Eq. (19) which is a cubic in (1 /P). The deflection pattern is flexural-torsional
since it contains the non-vanishing coefficients o„, bn, and c„ simultaneously.

If the section has one plane of symmetry, one of the coordinates of the centroid,
say Xo, vanishes. Then Eq. (19) reduces to

[n\Q/P) - \}{p*[n\N/P) - 1 ][{T/P) - l] - y\) = 0. (20)
Consequently two distinct types of buckling are possible. One is purely flexural and
symmetric. It corresponds to a buckling load which is the solution of Eq. (18). The
other is flexural-torsional since it simultaneously contains displacement components
corresponding to the non-vanishing coefficients an and cn; it is antisymmetric; its
buckling load P is the (smaller) root of the quadratic in (1/P) that can be obtained
by dividing Eq. (20) by [w2(Q/P) — 1]. The smaller of the two distinct buckling loads
is of practical importance. The buckling load according to Eq. (17) is always greater
than the smaller root of the quadratic.

Finally, if the section is doubly symmetric or point symmetric, *o=;yo = 0. Then
Eq. (19) reduces to

(T/P) -1 = 0. (21)
Buckling is either purely flexural or purely torsional. Of practical importance is the
smallest of the solutions for P of the three Eqs. (17), (18), and (21).


