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—NOTES—

USE OF SINE TRANSFORM FOR NON-SIMPLY
SUPPORTED BEAMS*

By A. G. STRANDHAGEN (Carnegie Institute of Technology)

The problem of non-simply supported beams is approached by various mathemati-
cal procedures. In certain applications several of the common methods are long and
tedious. By employing the sine transform a certain ease can be claimed for most cases.

- The definition of the sine transform of a function y(x) in the interval (0, }) is

l
S[y()] =f y(x) sin (nwx/Ddx = v(n). O<zx<lin=12---) (1)
0

Recalling that the expression of a function y(x) in a Fourier sine series is

y(x) = D_ b, sin nwx/l, (2)
nm==l
where z
b, = (2/l)f y(x) sin (nrx/l)dx, O<zx<lin=12,---) 3
[]

it becomes evident that the connection between the sine transform and the coefhi-
cients of the Fourier sine series is

S[y(x)] = (1/2)b,. )
Forms given by Eq. (2) and Eq. (3) are altered for the sake of convenience as follows:
y(2) = (2/1) Y v(n) sin (nwx/l), (5)
where !
. l
o(n) = S[y(x)] =f y(x) sin (nwx/l)dx. 6)
0

For example, consider the sine transform of (d?y/dx?) in the interval (0, I); by
definition

S[dzy/dx?] = fol (d2y/dx?) sin (nrx/Ddx. (n=1,2,---)

Integrating formally by parts gives
nw : nw \2
slow/a] = =27 0750 =501 - (Z2)s. G=t2-) @)
Likewise the sine transform of (d4y/dx*%) in (0, I) is:
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4 " nr " ”"
Sld*y/dxt] = — — [(— D) — ¥'(0)]

+( )[(—1)y<z>—y(0)]+( )v(n). (n=12---) (8

where v(n) in (7) and (8) is defined by Eq. (1).
Consider a beam fixed at x=0 with axial loads P. The intensity of transverse
loading is g(x), Fig. 1. The differential equation and boundary conditions are' as

follows:
1. d4y/dx* + k*(d*y/ds?) = ¢(x)/EI, 0<x<)
2. 3(0) = y() = 0,
3.y =0, »'(0)=0,

where

g(x) =0 when 0 < x <,
=0(x) when b < zx<yg,
=0 when ¢ < x <]/,

and¢>b. Letk*=P/EI, and primes b o |
indicate differentiation with re- p 4 m p
e

spect to x. Let S[y(x)]=v(n). o)

Transforming d‘y/dx* and d2y/dx? e £ >
and g¢(x) and substituting: y(0) *ﬁ
=y(l)=v""(}) =0, there results FiG. 1.

(nx/D)y"(0) + (nn/by'a(n) — ¥(nx/l)%(n) = (1/EI) f "6() sin (nra/D)dz.

~Solving tor v(n), where a?= (kl/r)2,
, 1 7 1 -
o(n) = — (I/x)3y""(0) R + TEL wr —and, 0(x) sin (nwrx/l)dx. ()]

Since y(x) = (2/02_ 2 v(n) sin nwx/l, then

3®) = — 2/e)y"(0) S —— sin (nra/)

—t n( 2 a2)

+ 2(I3/x4EI) i M@- c0(x’) sin (nwx’/Ddx’. ) (n # ) (10)
b

n=1 nz( 2 — 2)
The remaining boundary condition y’(0) =0 gives the following:
l had 1 c
II 0 ' . 1) l d ’. 11
(Y )E (ng_az) WEI;_:I w(nt —a) J, (2') sin (nwx'/l)dx (11)

Since J_=.,1/(n?—a?) = (1/2a?) (1 —7a cot 7e), then y''(0) becomes

2%/xEI) & . |
y(0) = (2a’t/nED) > ! 5 f 8(x') sin (nra’/Ddz’. (n5a) (12)
—J,

(1 = wa cot 7a) ,o1 n(n?
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Further simplifications ére possible in Eq. (12). Interchanging formally the integral
and summation sigri and summing, the following is obtained for y'’(0):

IJEI) e in k(l — l -

WED __ [y fin b= _i=s),

') = sin Al -

(1 — xa cotra)

© sin (rirx/l) x (sin ]z(lA— %) l—=x
e b v PR ot ol } = #(2).
w1 n(n? — a?)  2a? sin ki l
Thus by substitution of (13) in (10),
4a?l? o(x) c

== e 0 U / d 4

¥(=) mElI (1 — macotwa)d, ()¢(«)dx
218 = sin (nxx/l)

+ e Z.:i nz(ni mpryl N 0(2') sin (nxx’/Ddx’. (n#a,0< x <) (14)

where

(13)

Knowing the variation of 8(x) it is a matter of integration to obtain the required re-
sults. Now suppose that P=0, i.e., the beam is under no axial loads, and subject to
the same boundary conditions. Thus 2=a=0 in equations (9), (10), and (11) and then

L

E 0(x’ ) sin (nwx’/l)dx’.

Y0 = —7o
ne=l

Again interchanging formally the integral and summation sign,

9"(0) = fbcﬂ(x')x'(x’ — (&' — 2D)dx’,

212EI
where

© 3
3 (1/n9) sin (nws/l) = ’1'—2 (202/D) —3(/D2 + (a/D)3}.  (0< x/i<2.)
Nl

The equation for the elastic line becomes

y(x) = — -ITE_I [2(x/8) — 3(2/D* + (x/l)’]f:o(x’)(x’ — D(s" — 2Dax’

3 © 1 ¢
45 sin (ure/l) f 6(x') sin (nra’/Dda’. (0 < x <))
TEI Nl nt -/ p

To be sure, further summation in finite terms is possible, but this will lead to y(x)
being defined in distinct intervals in (0, /), as in the solution furnished by the classical
methods of differential equations; unquestionably, this is a disadvantage in engineer-
ing computations. The above results, however, remain in the desired form, with one
function y(x) in (0, ) regardless of the discontinuities of transverse loading.

In like manner other boundary conditions may be imposed, and other beam prob-
lems, such as beams on elastic foundations, can be solved.



