-NOTES-

USE OF SINE TRANSFORM FOR NON-SIMPLY SUPPORTED BEAMS*

By A. G. STRANDHAGEN (Carnegie Institute of Technology)
The problem of non-simply supported beams is approached by various mathematical procedures. In certain applications several of the common methods are long and tedious. By employing the sine transform a certain ease can be claimed for most cases.

The definition of the sine transform of a function $y(x)$ in the interval $(0, l)$ is

$$
\begin{equation*}
S[y(x)]=\int_{0}^{l} y(x) \sin (n \pi x / l) d x=v(n) . \quad(0<x<l ; n=1,2, \cdots) \tag{1}
\end{equation*}
$$

Recalling that the expression of a function $y(x)$ in a Fourier sine series is

$$
\begin{equation*}
y(x)=\sum_{n=1}^{\infty} b_{n} \sin n \pi x / l, \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{n}=(2 / l) \int_{0}^{l} y(x) \sin (n \pi x / l) d x, \quad(0<x<l ; n=1,2, \cdots) \tag{3}
\end{equation*}
$$

it becomes evident that the connection between the sine transform and the coefficients of the Fourier sine series is

$$
\begin{equation*}
S[y(x)]=(l / 2) b_{n} . \tag{4}
\end{equation*}
$$

Forms given by Eq. (2) and Eq. (3) are altered for the sake of convenience as follows:

$$
\begin{equation*}
y(x)=(2 / l) \sum_{n=1}^{\infty} v(n) \sin (n \pi x / l), \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
v(n)=S[y(x)]=\int_{0}^{l} y(x) \sin (n \pi x / l) d x \tag{6}
\end{equation*}
$$

For example, consider the sine transform of $\left(d^{2} y / d x^{2}\right)$ in the interval $(0, l)$; by definition

$$
S\left[d^{2} y / d x^{2}\right]=\int_{0}^{l}\left(d^{2} y / d x^{2}\right) \sin (n \pi x / l) d x . \quad(n=1,2, \cdots)
$$

Integrating formally by parts gives

$$
\begin{equation*}
S\left[d^{2} y / d x^{2}\right]=-\frac{n \pi}{l}\left[(-1)^{n} y(l)-y(0)\right]-\left(\frac{n \pi}{l}\right)^{2} v(n) . \quad(n=1,2, \cdots) \tag{7}
\end{equation*}
$$

Likewise the sine transform of $\left(d^{4} y / d x^{4}\right)$ in $(0, l)$ is:

[^0]\[

$$
\begin{align*}
S\left[d^{4} y / d x^{4}\right]=- & \frac{n \pi}{l}\left[(-1)^{n} y^{\prime \prime}(l)-y^{\prime \prime}(0)\right] \\
& +\left(\frac{n \pi}{l}\right)^{3}\left[(-1)^{n} y(l)-y(0)\right]+\left(\frac{n \pi}{l}\right)^{4} v(n), \cdot(n=1,2, \cdots) \tag{8}
\end{align*}
$$
\]

where $v(n)$ in (7) and (8) is defined by Eq. (1).
Consider a beam fixed at $x=0$ with axial loads P. The intensity of transverse loading is $q(x)$, Fig. 1. The differential equation and boundary conditions are as follows:

$$
\begin{aligned}
& \text { 1. } d^{4} y / d x^{4}+k^{2}\left(d^{2} y / d x^{2}\right)=q(x) / E I, \quad(0<x<l) \\
& \text { 2. } y(0)=y(l)=0 \\
& \text { 3. } y^{\prime \prime}(l)=0, \quad y^{\prime}(0)=0
\end{aligned}
$$

where

$$
\begin{aligned}
& q(x)=0 \quad \text { when } 0<x<b, \\
& =\theta(x) \text { when } b<x<c \text {, } \\
& =0 \quad \text { when } c<x<l \text {, }
\end{aligned}
$$

and $c>b$. Let $k^{2}=P / E \dot{I}$, and primes indicate differentiation with respect to x. Let $S[y(x)]=v(n)$. Transforming $d^{4} y / d x^{4}$ and $d^{2} y / d x^{2}$ and $q(x)$ and substituting $y(0)$ $=y(l)=y^{\prime \prime}(l)=0$, there results

Fig. 1.

$$
(n \pi / l) y^{\prime \prime}(0)+(n \pi / l)^{4} v(n)-k^{2}(n \pi / l)^{2} v(n)=(1 / E I) \int_{b}^{c} \theta(x) \sin (n \pi x / l) d x
$$

Solving tor $v(n)$, where $\alpha^{2}=(k l / \pi)^{2}$,

$$
\begin{equation*}
v(n)=-(l / \pi)^{3} y^{\prime \prime}(0) \frac{1}{n\left(n^{2}-\alpha^{2}\right)}+\frac{l^{4}}{\pi^{4} E I} \frac{1}{n^{2}\left(n^{2}-\alpha^{2}\right)} \int_{b}^{c} \theta(x) \sin (n \pi x / l) d x \tag{9}
\end{equation*}
$$

Since $y(x)=(2 / l) \sum_{n=1}^{\infty} v(n) \sin n \pi x / l$, then

$$
\begin{align*}
y(x)= & -\left(2 l^{2} / \pi^{3}\right) y^{\prime \prime}(0) \sum_{n=1}^{\infty} \frac{1}{n\left(n^{2}-\alpha^{2}\right)} \sin (n \pi x / l) \\
& +2\left(l^{3} / \pi^{4} E I\right) \sum_{n=1}^{\infty} \frac{\sin (n \pi x / l)}{n^{2}\left(n^{2}-\alpha^{2}\right)} \int_{b}^{c} \theta\left(x^{\prime}\right) \sin \left(n \pi x^{\prime} / l\right) d x^{\prime} . \quad(n \neq \alpha) \tag{10}
\end{align*}
$$

The remaining boundary condition $y^{\prime}(0)=0$ gives the following:

$$
\begin{equation*}
y^{\prime \prime}(0) \sum_{n=1}^{\infty} \frac{1}{\left(n^{2}-\alpha^{2}\right)}=\frac{l}{\pi E I} \sum_{n=1}^{\infty} \frac{1}{n\left(n^{2}-\alpha^{2}\right)} \int_{b}^{c} \theta\left(x^{\prime}\right) \sin \left(n \pi x^{\prime} / l\right) d x^{\prime} \tag{11}
\end{equation*}
$$

Since $\sum_{n-1}^{\infty} 1 /\left(n^{2}-\alpha^{2}\right)=\left(1 / 2 \alpha^{2}\right)(1-\pi \alpha \cot \pi \alpha)$, then $y^{\prime \prime}(0)$ becomes

$$
\begin{equation*}
y^{\prime \prime}(0)=\frac{\left(2 \alpha^{2} l / \pi E I\right)}{(1-\pi \alpha \cot \pi \alpha)} \sum_{n=1}^{\infty} \frac{1}{n\left(n^{2}-\alpha^{2}\right)} \int_{b}^{c} \theta\left(x^{\prime}\right) \sin \left(n \pi x^{\prime} / l\right) d x^{\prime} . \quad(n \neq \alpha) \tag{12}
\end{equation*}
$$

Further simplifications are possible in Eq. (12). Interchanging formally the integral and summation sign and summing, the following is obtained for $y^{\prime \prime}(0)$:

$$
y^{\prime \prime}(0)=\frac{(l / E I)}{(1-\pi \alpha \cot \pi \alpha)} \int_{b}^{c} \theta(x)\left\{\frac{\sin k(l-x)}{\sin k l}-\frac{l-x}{l}\right\} d x
$$

where

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\sin (n \pi x / l)}{n\left(n^{2}-\alpha^{2}\right)}=\frac{\pi}{2 \alpha^{2}}\left\{\frac{\sin k(l-x)}{\sin k l}-\frac{l-x}{l}\right\}=\phi(x) \tag{13}
\end{equation*}
$$

Thus by substitution of (13) in (10),

$$
\begin{align*}
y(x)= & -\frac{4 \alpha^{2} l^{3}}{\pi^{4} E I} \frac{\phi(x)}{(1-\pi \alpha \cot \pi \alpha)} \int_{b}^{c} \theta\left(x^{\prime}\right) \phi\left(x^{\prime}\right) d x^{\prime} \\
& +\frac{2 l^{8}}{\pi^{4} E I} \sum_{n=1}^{\infty} \frac{\sin (n \pi x / l)}{n^{2}\left(n^{2}-\alpha^{2}\right)} \int_{b}^{c} \theta\left(x^{\prime}\right) \sin \left(n \pi x^{\prime} / l\right) d x^{\prime} . \quad(n \neq \alpha, 0<x<l) \tag{14}
\end{align*}
$$

Knowing the variation of $\theta(x)$ it is a matter of integration to obtain the required results. Now suppose that $P=0$, i.e., the beam is under no axial loads, and subject to the same boundary conditions. Thus $k=\alpha=0$ in equations (9), (10), and (11) and then

$$
y^{\prime \prime}(0)=\frac{6 l}{\pi^{3} E I} \sum_{n=1}^{\infty} \frac{1}{n^{3}} \int_{b}^{c} \theta\left(x^{\prime}\right) \sin \left(n \pi x^{\prime} / l\right) d x^{\prime}
$$

Again interchanging formally the integral and summation sign,

$$
y^{\prime \prime}(0)=\frac{1}{2 l^{2} E I} \int_{b}^{c} \theta\left(x^{\prime}\right) x^{\prime}\left(x^{\prime}-l\right)\left(x^{\prime}-2 l\right) d x^{\prime}
$$

where

$$
\sum_{n=1}^{\infty}\left(1 / n^{3}\right) \sin (n \pi x / l)=\frac{\pi^{3}}{12}\left\{2(x / l)-3(x / l)^{2}+(x / l)^{3}\right\} . \quad(0<x / l<2 .)
$$

The equation for the elastic line becomes

$$
\begin{aligned}
y(x)= & -\frac{1}{12 E I}\left[2(x / l)-3(x / l)^{2}+(x / l)^{3}\right] \int_{b}^{c} \theta\left(x^{\prime}\right)\left(x^{\prime}-l\right)\left(x^{\prime}-2 l\right) d x^{\prime} \\
& +\frac{2 l^{3}}{\pi^{4} E I} \sum_{n=1}^{\infty} \frac{\sin (n \pi x / l)}{n^{4}} \int_{b}^{c} \theta\left(x^{\prime}\right) \sin \left(n \pi x^{\prime} / l\right) d x^{\prime} . \quad(0<x<l)
\end{aligned}
$$

To be sure, further summation in finite terms is possible, but this will lead to $y(x)$ being defined in distinct intervals in ($0, l$), as in the solution furnished by the classical methods of differential equations; unquestionably, this is a disadvantage in engineering computations. The above results, however, remain in the desired form, with one function $y(x)$ in $(0, l)$ regardless of the discontinuities of transverse loading.

In like manner other boundary conditions may be imposed, and other beam problems, such as beams on elastic foundations, can be solved.

[^0]: * Received August 9, 1943.

