
237

ON MOMENT BALANCING IN STRUCTURAL DYNAMICS*

BY

R. E. GASKELL**

Brown University

1. The method of moment balancing. In recent years several writers in this coun-

try have developed the method of moment balancing in the analysis of continuous

beams and frameworks. Mention should be made especially of the basic paper by

Hardy Cross.1'2 One could also classify as related procedures the method of balancing

angle changes given in a paper by L. E. Grinter,3 and the whole field of relaxation

methods being investigated by R. V. Southwell.4 That such interest is taken in these

methods would seem to indicate that their extension to the dynamics of beams and

frameworks might be desirable, and it is the purpose of this article to provide at least

the beginning of this extension.

We assume that we are dealing with plane structures on which loads are acting in

the plane of the structure. Members of the structure consist of uniform straight

beams; and they meet in stiff joints, which are assumed to be fixed against translation.

All connections to a foundation are either built-in or hinged.

The method of moment balancing depends upon three very simple ideas, namely,

fixed-end moment, stiffness and carry-over factor. We give their definitions here:

The "fixed-end moment" at the end of a member is the moment which would

exist at that end if all joints to which it is connected were fixed against rotation.

If one end of a member is simply-supported, its "stiffness" is the moment re-

quired to produce unit rotation of that end. The other end may be built-in, simply-

supported or free.

The "carry-over factor" is the numerical value of the moment induced at one

end of a member by a unit moment acting at the other end.

Methods of finding these characteristics of beams and other components of a

structure are numerous and well-known. Having determined them for all components
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1 H. Cross, Analysis of continuous frames by distributing fixed-end, moments, Trans. A.S.C.E. 96,
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of a framework, we assume that all joints of the framework (in Fig. 1, for example)

are fixed against rotation; and determine the resulting fixed-end moments acting at

the ends of each member. Built-in, simply-

supported or free ends are not considered as

joints. Then at any joint, say D, a moment

equal but opposite in sign to the sum of its

fixed-end moments is applied, representing the

effect of releasing the joint. This moment is

distributed to the members AD, CD, BD, ED,

meeting at D, in proportion to their stiffnesses,

Fig- since all members meeting at D rotate through

the same angle. The share falling to each mem-

ber is called the "balancing moment" acting at the end D of this member. The joint

D is now balanced, but the new balancing moment Mda acting at the end D of AD

will induce an additional moment

Mad = CadMda

at the opposite end A. Cad is the carry-over factor for the member AD, and the mo-

ment Mda is said to be "carried over." Likewise, moments are carried over to C

and E, but none to B since Cdb = 0. The joint D

is again locked—this time in its balanced posi- i P

tion—and the process repeated for all joints of   & 4 C

V s
/

the framework until the balancing moments are

negligible. The order of choosing unbalanced

joints for balancing is not obligatory, but usu-

ally the joint with the largest total unbalanced

moment at any given stage is balanced. Signs

of the moments are chosen so that a positive

moment acting on the end of the beam tends to

rotate it in a clockwise direction. Likewise, a

rotation in the clockwise direction is consid-

ered positive.

Example 1. As a simple example consider the Fig 2

rectangular bent formed of uniform and equal

bars, illustrated in Fig. 2. All of the bars are of equal stiffness and the carry-over fac-

tor in each case is 1/2. The only non-vanishing fixed-end moments are —A25PI

and A25PI at the left and right ends of the horizontal bar. The calculations used

in the method of moment balancing are shown in Table I. In a given column, say

that headed Mcb/PI, we find recorded successively the fixed-end moment and the

balancing moment. These are added, and since at this stage Mcb + Mcd=0, the joint

C is balanced. The balancing moment has been carried over to column MBc/Pl, and

the joint B is balanced next. The same steps are followed until after five balancings

the moments to be carried over are negligible. The results obtained agree with those

computed by other methods.

2. Dynamics of a simple beam. It is clear that if we can set up analogous defini-

tions for fixed-end moment, carry-over factor and stiffness for a beam on which an

oscillating force is acting, and if we can find these characteristics for the oscillating
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beam, it may be possible to use the method of balancing moments just as it is in the

dynamic case. A procedure adapted to this purpose can be found in an article of

W. Prager's,6 the essentials of which will be given here.

Table I.

Mab/PI
.000

.000

.039

.039

.039

.002

.041

.041

Mba/PI
.000

.000

.078

.078

.078

.005

.083

.083

Mbc/PI
-.125

-.032

-.157

.079

.078

.010

.088

.005

.083

.083

Mcb/PI
.125

-.063

.062

.040

.102

.020

.082

.002

.084

.001

.083

M CD I PI

.000
-.062

-.062

.062

.020

-.082

-.082
-.001

-.083

Mdc/PI
.000

-.031

-.031

.031

.010

.041

-.041

-.041

The differential equation for the deflection, y(x, t), of a uniform beam with no

external load is taken as
d2-y d*y

H — + EI— = 0,
dt2 dx4

where /x is the mass per unit length of the beam and EI

is its flexural rigidity (Fig. 3). Following a well-known 0 £•* ~

procedure we write y(x, t)=u(x) cos ut, u{x) being the

amplitude of the assumed harmonic motion and w its

circular frequency. Hence pIG 3

d*u
 (- = 0,
dx4

where ni=oj2n/EI-, and from this equation

u{x) — A cosh nx + B sinh nx + C cos nx + D sin nx.

It is convenient to express the four constants of integration in terms of four quanti-

ties of immediate physical importance: the amplitudes of the moments acting on the

ends of the beam, and of the displacements at the ends of the beam. This can be done

by use of the relations

5 W. Prager, Vie Beanspruchung von Tragwerken durch schwingende Lasten, Ingenieur-Archiv 1, 527

(1930).



240 R. E. GASKELL [Vol. I, No. 3

Uo — A C

U\ = A cosh X + B sinh X + C cos X + D sin X,

d2if
Mn = — EI    = - A - C\EIn*= — A — C}j

J x=0

] -MJi=i

d2u ,
Mi = EI —- = {A cosh X + B sinh X — C cos X — D sin \\EIn2,

dx2 J x=i

where \ = nl. It can be seen that the amplitudes of the deflection, angle of rotation,

bending moment and shear for any value of x will involve linearly the amplitudes of

the end deflections and end moments. These quantities can be expressed in much

simpler form if the following functions and abbreviations are introduced:

X
<£(X) = (coth X — cot X)/2A, <£(X) = — (coth X + cot X),

X
— — (csch X — csc X)/2X, ^(X) = — (csch X + csc X),

V = I/EI.

Then we find the following expressions for the amplitudes of the angles of rotation at

the end points (Fig. 4):

Mo>0-

Fig. 4.

«o<KX) Ui\p(\)
u0 = — + + M0/V(X) - AW(X), (1)

I I

«o^(X) «i#(X)
Ml H —■ — Mal'\p(\) + Mil'4>(\); (2)

I I

and for the amplitudes of the reactions:

... X4 X4 Mo _ Mi —
Ro = - EIuo = Mo— <#>(X) + Mi -i(\) — <#>(X) — iA(X),

II II I I
(3)

... X4 X4 M o — M\ —
Ri = - Elm = - Mo — ^(X) - Mi — *(X) - — *(X) - — ^(X). (4)

it 11 i I

If the beam, simply supported at both ends, is loaded at its center by an oscillating

load, P cos cct (Fig. 5),
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tfo = Mo = u' (^j = 0, R (y) = P/2.

Then, from (2) and (4),

y Ml — 101 —
/>

2 \ 2 / IH' \ 2 / I V 2 / \ 2 / 2' Fig-5-

so that

= iW$(X), (5)

Jiff—) = - P/S(X), (6)

where

$(\) = — (tanh JX — tan §X)/4X3, i>(X) = (tanh |X + tan 5X)/4X.

Also, from formulas (5) and (6), and with (l)-(4), we find that

Mo' = PM'¥(X) = - Mi', (7)

and
P0 = P¥(X) = - Pi, (8)

where

^(X) = — (sech |X — sec |X)4X2, ^(X) = (sech §X + sec |X)/4.

Now, if the beam in question is on unyielding supports but has moments acting

on its ends in addition to the load acting at its center, we find by addition of (1) and

(7) that

Mo = M0l'<t>(\) - MiZVO) + PH'¥(X); (9)

and, similarly

Mi' = - - PM'*(X). (10)

Obviously, with the equations derived, problems in dynamics of frameworks are

reduced to problems in statics of frameworks. To facilitate this work, tables of the

functions 0(X), </>(X), '/'(X), i?(X). ^(X), "iKX), ̂ (X) and ^(X) are available.6

3. Dynamic moment balancing. By substituting "moment-amplitude" and "rota-

tion-amplitude" for "moment" and "rotation," respectively, wherever they occur in

the definitions of fixed-end moment, stiffness and carry-over factor, we arrive at

suitable definitions for the corresponding dynamic quantities. These three quantities

will give us a basis for the application of the moment balancing method to problems

in dynamics of frameworks.

' K. Hohenemser and W. Prager, Dynamik der Stabwerke, Julius Springer, Berlin, 1933.
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First let us consider the amplitudes of the moments acting at the ends of a cen-

trally loaded built-in beam (Fig. 6). Equa-

tions (9) and (10) can be applied, and we

Fig. 6.

(b)

| Mf find that

M0<t>(\) - Mxi(X) = - PlV(X),

and

Uj'=l M^{\) - Mi0(X) = - iW(X).

jThen, since</>(X)+i/'(X) = 2<J>(X), the ampli-

tudes of the moment are given by the

relations

U,'=/
\M Mo = — Mi = — _ • (11)J n! 2*(X)

These quantities give the amplitudes of

the fixed-end moments for a beam loaded

\ m at center with a load of amplitude P.

J / The problem of finding the dynamic

stiffness is illustrated in Fig. 7. If the far

end of the beam is built-in (Fig. 7a), we

find from (2) that

- M0l'f(\) + M1l'<t>(X) = 1,

and from (9)
Mo<t>(X) ~ Mi^(X) = 0.

Since M\ is by definition the stiffness, K,

4>(X) \B(\)

K~ /'{[^(X)]»- [V(X)]2} = ~ l'D(\) ' (12)
where

B(\) = cosh X sin X — cos X sinh X,

D(\) = cosh X cos X — 1.

Tables exist for these functions and for the quotient B(\)/D(K).S

For a beam on two simple supports (Fig. 7b), equation (2) gives

1 = Mil'<j>(\), so K = 1//'<KX).

To find the stiffness of the cantilever beam (Fig. 7c), we find from (2) and (3) that

Uq _

*(X) + M/0(X) = 1,
I

X4 M1 _
«o—<^>(X) — ̂ (X) = 0.

Hence,
XV(X)

K~ r{x<[<Kx)]2- [m]2} ' (13)
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The carry-over factor needs to be found only for the case illustrated in Fig. 7a,

since it is zero in the other two cases.

From equation (1)

- Mi*(X) = 0,

so that the carry-over factor is defined by

M0 *(X)
C = = — • (14)

Mi 4>(\)

We are now equipped to apply the moment balancing method to problems in

dynamics of frameworks.

Example 2. Consider again the bent illustrated in Fig. 2, but now suppose that

the frequency w has a value such that X = 3.30 for each bar. Then we have fixed-end

moment-amplitudes of —. 169PI and . 169PI at the left and right ends of the horizontal

bar, equal carry-over factors of 1.22, and equal stiffnesses for each bar. Table II

gives the calculations involved in solving this problem. The values obtained from the

12 balancings are correct to two significant figures.

4. Dynamic balancing of angle changes. The application of the results of Sec-

tion 2 to L. E. Grinter's method of balancing angle changes3 is not difficult. In

balancing a given joint, the members of the framework meeting at the joint are as-

sumed to be simply-supported and disconnected there. Then rotations are forced by

means of applied moments until the angular discontinuities between the members are

negligible. To work with rotations rather than moments we require two more defini-

tions.

By "angle-change" will be meant the change in slope produced at the end of

a member either by loads or by an applied end moment.

The "angle carry-over factor" is the numerical value of the angle change in-

duced at one end of a member by a unit angle-change imposed upon the other end.

The amplitudes of the angle changes, at the ends of a simply supported beam,

due to a central load of amplitude P are seen from (7) to be

=-ul = PW'¥( X).

The angle carry-over factor can be found by consideration of a simply supported

beam, one of whose ends is rotated by means of an applied moment-amplitude (Fig.

8). From equations (1) and (2), u{ = —u{ i^(X)/<£(X) so that the angle carry-over

factor is \p(k)/cfrQC).
Similarly, by consideration of equations (1), ft t

(2) and (4) we can arrive at an angle carry-over ® ~

factor for a cantilever beam: Fig. 8.

= *(A)*(X) + X«*(X)*(A)
[*(x)]« - x«fo(x)]»

Since 0(0) =#(0) =1, it is seen that this reduces to unity in the static case.

Continuity is established between a member and a joint by giving the joint a

rotation-amplitude Kidi/ZK, where 0,- is the amplitude of the angle change in the ith
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Table II.

mab/pi
.000

.000

.166

.166

.166

.062

.228

.228

.023

.251

.251

.009

.260

.260

.003

.263

.263

.263

mba/pi
.000

.000

.136

.136

.136

.051

.187

.187

.019

.206

.206

.007

.213

.213

.002

.215

.215

.001

.216

Mbc/PI
-.169

-.103

-.272

.136

-.136

-.101

-.237

.050

-.187

-.038

.225

.019

-.206

-.014

-.220

.007

-.213

-.005

-.218

.003

-.215

-.002

-.217

.001

-.216

Mcb/PI
.169

-.084

.085

.166

.251

.083

.168

.062

.230

.031

.199

.023

.222

.011

.211

.009

.220

.005

.215

.003

.218

.001

.217

.217

Mcd/PI
.000

-.085

.085

.085

.083

.168

.168

.031

-.199

.199

.012

-.211

.211

.004

-.215

.215

.002

-.217

-.217

Mdc/PI
.000

-.103

-.103

-.103

-.101

-.204

-.204

-.038

-.242

-.242

-.014

-.256

-.256

-.005

-.261

-.261

-.002

-.263

-.263
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member, Ki its stiffness, and the summation extends over all bars meeting at the joint;

and at the same time the end of the member itself is given a rotation-amplitude

— [Oi — Kidi/HK]. This is done for each member meeting at the joint, thereby bal-

ancing that joint; then the assigned rotation-amplitudes are carried over, and the

balancing process continues.

After the rotation-amplitudes for all joints have been found with the desired ac-

curacy, the moment-amplitudes can be found from a combination of (9) and (10):

«o'*(X) + «i'*(X) P»(X)
Mq = —T-r ; ; —: — > (15)

/'{ [<^(X)]2 - [^(X)]2} 2*(X)

«0'iKx) + «i'<KA) , p»(x)
Mi = —r~r i r H = • (16)

l'{[<t>w}2 - [*(X)]2} 2*(X)

Table III.

B

Oba/PU'
.0000

.0000

.0192

.0192

.0192

.0016

.0208

.0208

.0001

.0209

.0209

Bbc/PU' Scb/PW
.0625 -.0625

.0357
-.0178

.0447 -.0268
-.0225

.0128

.0192 -.0140
.0073

.0036

.0228 -.0213

.0020
.0010

.0208 -.0203
.0006

.0003

.0211 -.0209

.0002
.0001

.0209 -.0208
-.0001

.0209 -.0209

Bcb/PU'
.0000

-.0268

-.0268

.0268

.0055

.0213

.0213

.0004

- .0209

-.0209

-.0209

Mab= -0418 PI Mba= .0836 PI MCb= .0832 PI

Mdc= -.0419 PI MBc= — .0832 PI Mcd= - .0836 PI
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It is interesting to observe that when X = 0 equations (15) and (16) reduce to the

slope-deflection equations for a centrally loaded beam.7

Example 3. As an illustration let us solve Example 1 by the method of balancing

angle changes. For this method, the stiffness of the horizontal bar will be the moment

required to produce unit rotation of one end while the other end is simply-supported;

while the stiffness of a vertical bar requires the other end to be built-in. Hence the

ratio of the stiffness of the horizontal bar to the stiffness of a vertical bar is 3/4. If

all joints are assumed to be pin-connected, we have angle changes 6bc = .0625PW

and 9Cb= —.0625Pll' due to the load P. For simplicity, u[ is replaced by 0,-.

In Table III we find the computation used in solving this example. Joint C is

balanced first by rotating the member CB through the angle — (1 —f)( —.0625)Pll'

= .0357Pll' and the other members of the joint (that is, CD) through the angle

f( — .0625)P//' = — .0268J7/'. Continuity at that joint is then established, but the

rotation of CD induces a rotation at the other end of the beam, 6Bc= — A78PW.

This leaves a total unbalance of .04:4.7Pll' at joint B, which is balanced next. These

balancings continue until the angle changes to be carried over are negligible. The

resulting moments, computed from (15) and (16) are also listed, and compare favor-

ably with the results obtained for Example 1 by moment balancing.

Example 4. If, now, co has a value such that X = 3.00, we find angle changes

Obc = -381PII' = —9cb due to the load P cosut. Furthermore the angle carry-over

factor for the horizontal bar is —.872, and as to stiffnesses, Kbc = -549 I', Kab = Kcd

= 3.102 I'. Table IV gives the computation involved in 12 balancings of angle changes

in this case. The values of the moment-amplitudes obtained are compared with those

obtained by moment balancing.

5. Convergence of the moment balancing process. Convergence of the process of

moment balancing can be assured if the frequency of the forced vibration is smaller

than the first natural frequency of the structure. The first step of the method of mo-

ment balancing leads to the determination of the amplitudes of the unbalanced

moments. For the following steps these unbalanced moments are considered as ex-

terior couples acting on the joints of the structure. In the type of structure considered

here (joints fixed against translation) the amplitudes of displacement and bending

moment of any member are completely determined by the frequency co and the

rotation-amplitudes at the two ends of the member. If a set of values of the rotation-

amplitudes at the n joints of the structure is assumed, it is therefore possible to com-

pute the amplitudes of the periodic couples which must be applied to the joints in

order to produce the assumed rotation-amplitudes. Let 6i = u(, (i = l, 2, • • • , n),

be the rotation-amplitudes and A( the corresponding amplitudes of the couples.

Furthermore, let Bi be the amplitudes of the exterior couples obtained by the first

step of the method of moment balancing. Then, if the assumed 9i represent the actual

configuration enforced by the loads Bi, Ai — Bi = 0; but in general

Ai - Bi = Cit (17)

where Ci is the residual moment-amplitude.

Amongst all possible systems 6i the actual one minimizes the energy function

7 See, for example, J. I. Parcel and G. A. Maney, Statically indeterminate stresses, John Wiley and

Sons, 1936, p. 149.
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Table IV.

Bba/PW

.000

.000

.022

.022

.022

.011

.033

.033

.005

.038

.038

.003

.041

.041

.001

.042

.042

.001

.043

Bsc/Pll'

.381

-.268

.113
-.091

.022

.055

.077
-.044

.033

.027

.060
-.022

.038

.013

.051
-.010

.041

.006

.047
-.005

.042

.003

.045

.002

.043

Ocb/PW

-.381

.307

-.074

.079

.005
-.064

-.059

.038

-.021
-.030

-.051

.019

-.032
-.015

-.047

.008

-.039
-.006

-.045

.005

-.040
-.004

-.044

-.044

8cd/PU'

.000
-.074

-.074

-.074

.015

-.059

.059

.008

-.051

.051

.004

-.047

.047

.002

-.045

.045

.001

-.044

-.044

Oab = Sdc — 0.



248 R. E. GASKELL [Vol. I, No. 3

Balancing angle changes Balancing moments

Mab/PI .116

Mb a/PI ■ 134
Mbc/PI —. 138

Mcb/PI . 132

Mod/PI —.136

Mdc/PI —.119

.118

.135
-.135

.135
-.135
-.118

= otikeiek - 2Bkek. (18)
i,k=l k= 1

The first term on the right side represents the internal energy,

5 oiikOiSh = EI f (u")2dx — /io>2 f m2JxI , (19)
«',fc=l v. J 0 Jo )

where the right hand sum is to be taken over all members of the structure. The rela-

tion (19) arises from the fact that, for any member, u" and u can be expressed linearly

in terms of the rotation-amplitudes at the ends of this member. Note that aik=aki

and Ai=^l,1aik9k.

Let us denote the first natural frequency of the structure by «i. The values

an, «22, • • • , oinn then can be shown to be positive as long as coCcoi. Indeed, by Ray-

leigh's principle

«i ^ [E EI ' (w")2 dx] /[Z M (20)

where the sums are to be extended over all members of the structure. As the function

u in (20) let us take the displacements corresponding to 0i = l, 62 = 63= ■ ■ ■ = 0„ = 0.

From (19) and (20) together with the condition w<a>i it is then clear that an>0.

Similarly «22>0, «33>0, • • • ,a„„>0.

Let a first set of values 0j = 0((1) be given and compute the corresponding residual

moment-amplitudes Cj". Suppose the subscripts 1,2, • • • , n to be arranged in such

a manner that | Cj1' | ^ | C4(I) |, (i = 2,3, • • • , n). We now define a second set of values

0® which differs from the first one only in so far as the value of 6\ is concerned:

o™ = o™ + <t>, e,<2> = 0,U), '(* = 2, 3, •••,«).

We propose to determine 0 in such a manner that the value of H is decreased.8 We

have

H(em) - H(ew) = [ ± - Bl] 4> + ^ ^ (21)
L k=i J 2 2

Taking

8 See G. Temple, The General theory of relaxation methods applied to linear systems, Proc. R. Soc. of

London, Ser. A, 169, 476, (1938-1939).
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c(1)
0 = - — (22)

an

we obtain

H(6m) - H(6W) = -l[c")],/«n (23)

which is certainly negative as long as w<«i. The residual moment-amplitude Cf' cor-

responding to the new values 04t2) equals

Ci aikSk — Bi = Ci + au4> = 0.
k~ 1

This shows that the choice of 4> according to (22) corresponds precisely to the process

of moment balancing where in each step the greatest absolute residual moment is

"liquidated." For the next step the subscripts i have to be rearranged, so that Cj2)

is the greatest absolute residual moment. Continuing in this way we obtain a decreas-

ing sequence of values of H. If we simplify our notation by writing Hlp) instead of

iJ(0(>4>))> this sequence becomes

jffu> > #(2> > • . . > H<p) > • > Hmin,

with

H<P+i) - H(P) = - l[clP)}2/«n < 0.

Here otu has been written instead of the an of (23), since as a consequence of the re-

arrangement of the subscripts the value of this quantity changes from step to step.

Now aii' is positive and can assume only a finite number of different values (n at

the most). Furthermore, the sequence Hip) is decreasing monotonically and is

bounded from below by Therefore

lim [CiP)] = 0.
p—* 00

Since C[p) is the greatest absolute residual moment in the pth step, this means that

ultimately all residual moments will disappear. The structure is then completely bal-

anced.

This convergence may be rather slow, especially if co is near coi. For example, com-

pare the 12 balancings used in Example 2, when \ = 3.30, to the 5 needed in Example

1, for the same structure when X = 0. For this structure Xi = 3.55.

The method of balancing angle changes may not always converge when w<«i,

as will be seen if Example 4 is attempted when X = 3.30. Usually the method of bal-

ancing moments converges more rapidly than the method of balancing angle changes.


