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ON THE DISCONTINUOUS FLOW AROUND AN
AIRFOIL WITH FLAP*

BY
P. W. KETCHUM
University of Illinois**

Summary. A method is given for calculating the effect of the wake on the
pressure distribution produced by the steady, two dimensional flow around
an airfoil with infinite span and broken line profile. To determine the size
of the wake there is proposed the hypothesis that the flow is such as to create
a minimum disturbance at distant points. :

1. Introduction. The general Navier-Stokes equations for the steady, vis-
cous flow of an incompressible fluid around an immersed body have not been
solved even for such simple cases as the sphere or cylinder. However, it is
well known that certain aspects of the flow are adequately represented by
neglecting viscosity entirely. Thus the perfect fluid theory of Kutta and
Joukowski for calculating the reaction of the air on an airfoil with infinite
span, engaged in a uniform rectilinear translation through a bulk of air at
rest, gives satisfactory results so far as the lift is concerned. This theory fails
to account for all the details of the flow, however. In particular, it neglects
the wake of deadwater which exists at the trailing edge. The effect of this
wake is to make the lift slightly smaller than the calculated value and to
reduce the negative pressures along the rear portion of the suction side. Since
the effect is greatest near the trailing edge, the discrepancies between calcula-
tions and observation will be most pronounced for the total hinge moment
of the pressures on a trailing edge flap.

The boundary layer theory has been used to calculate the size of the wake,
i.e. the point where the wake detaches itself from the body. Basing his cal-
culations on the observed pressure distribution, Hiemenz in 1911 obtained
from the boundary layer theory an angle of 82° from the forward stagnation
point for the point of detachment in flow around an infinite circular cylinder,
a value in good agreement with his experiments. However, his experiments
were made at low Reynolds numbers; an airfoil would be stalled for such a
flow. For the high Reynolds numbers corresponding to the normal, unstalled
flight of an airfoil, the calculated point of detachment for flow around the
cylinder is at least 20° smaller than the observed value, even though the cal-
culations are based on experimental pressure distributions.

* Received Dec. 30, 1942.

** This investigation was undertaken at the suggestion of Professor W. Prager while the
author was a Fellow under the Program of Advanced Instruction and Research in Mechanics
at Brown University,
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A definite advance was made by C. Schmieden in 1932! when he showed
that for high Reynolds numbers the perfect fluid theory is adequate to ex-
plain the wake behind a cylinder if one assumes a discontinuous flow. Accord-
ing to this view, the wake is obtained as a special case of the classical theory
of jets. The theory of jets, due to Helmholtz and Levi-Civita, assumes a
wake of stationary fluid at uniform pressure, bounded by two streamlines
along which the speed is constant and different from zero. In spite of the fact
that such a discontinuity in velocities would be impossible in a real fluid,
Schmieden’s calculated values of the pressures around the cylinder agree re-
markably well with experiment. The agreement is perfect up to the pressure
minimum; beyond that there are some deviations, which can be attributed to
turbulence in the boundary layer and circulation of fluid in the wake. The
point of detachment is approximately correct, but the observed point is some-
what masked by the turbulence; and the circulation of the fluid in the wake
causes the constant pressure in the wake to be negative instead of zero as
predicted by the theory.

Schmieden found, however, that the equations of motion for a perfect fluid
plus the usual boundary condition that the velocity approach the stream
velocity as the distance from the cylinder increases without bound are insuffi-
cient to determine the discontinuous flow uniquely. Various sizes and types
of wakes are possible. There exist symmetric discontinuous flows with wakes
detaching from the cylinder at every angle from about 55° to 180°. For angles
between 55° and about 124° the wake extends to infinity and is bounded by
streamlines which are first concave toward the wake and then, after passing
through a point of inflection, are convex; the drag on the cylinder is positive;
and the constant pressure in the wake is zero. For angles between 124° and
180° the wake is finite in extent, the drag is zero, and the pressure in the
wake is positive.? For the critical angle of about 55° the wake boundaries
are always convex (Helmholtz case). For the critical angle of about 124° the
wake is infinite but has a width which tends asymptotically to zero, the
boundaries of the wake are concave, the drag vanishes, and the pressure in
the wake is zero; we shall refer to this as the Schmieden case.

Since a correctly set physical problem should have a unique answer even
for a perfect fluid, an additional boundary condition is evidently required
to determine the flow. Schmieden has chosen the auxiliary condition that
the wake boundaries be concave and infinite in extent. A possible reason for
selecting the condition of concavity is the intuitive feeling that in a viscous
fluid any portion of a streamline with a point of inflection would be swept

1 Schmieden, C., Uber die Eindeutigkeit der Losungen in der Theorie der unstetigen Strim-
ungen, Ingenieur-Archiv 3, pages 356-370 (1932) and 5, 373-375 (1934).

* Schmieden considers only infinite wakes, but it is obvious that finite wakes can exist:
see Kolscher, M., Unstetige Stromungen mit endlichem Totwasser, Luftfahrtforschung 17, 154—
160 (1940). The present paper also restricts attention to infinite wakes.
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away to infinity. However, for a perfect fluid there would be no such tend-
ency; moreover, the condition of concavity is an “internal” condition, more
in the nature of a law of motion than of a boundary condition. The required
boundary condition must be “external” in character—a condition which can
be imposed arbitrarily as a constraint on the system. Such an external condi-
tion could only be imposed by specifying something about the nature of the
impinging stream. In particular we could require that this stream be as nearly
uniform as possible, that is, the difference between the velocity and the un-
disturbed stream velocity shall approach zero as rapidly as possible as one
recedes from the cylinder in the direction of the stream source. In the present
paper we show that this assumption of “minimum disturbance at infinity”
does in fact lead to the Schmieden case, at least for infinite wakes.

On the experimental side the justification for choosing the Schmieden case
for an approximation to the flow of an actual fluid at high Reynolds numbers
lies in the agreement previously mentioned between calculated and observed
pressure distributions.® Of the various discontinuous flows the Schmieden
case gives the best agreement for the pressure distribution as a whole, but
more particularly for the forward part of the cylinder where turbulence is
absent. As previously mentioned the observed pressure in the wake is nega-
tive instead of zero, but this is still the best agreement possible since the
theory predicts a positive pressure for finite wakes. Quantative technical ap-
plications involving pressures behind the cylinder are subject to the limita-
tions imposed by this discrepancy. Further refinements of the theory to
eliminate this discrepancy by taking into account the turbulence in the wake
have been suggested by Schmieden (Reference 1, page 364).

In 1940 Schmieden* applied his theory of discontinuous flow to the case of
an airfoil with infinite span whose profile is an inclined straight line segment. It
was found that the pressure distributions so obtained agree almost exactly
with the pressure calculated from the Kutta-Joukowski theory except near the
trailing edge, where the wake would be expected to exert an appreciable in-
fluence. It should be observed that the Kutta-Joukowski theory also uses
an additional assumption beyond those involved in the perfect fluid equa-
tions, namely, the Joukowski hypothesis that the circulafion is such that
the velocity at the trailing edge is finite. Schmieden makes no direct assump-
tion about the circulation, but replaces the Joukowski hypothesis by the
above assumption concerning the nature of the wake. From Schmieden'’s
point of view the Joukowski hypothesis is a special assumption concerning the
nature of the wake in the limiting case when the wake is made to disappear.

3 Schmieden compares his results with the experimental values of Eisner, F., Widerstands-
messungen an umstromten Zylindern, Mitteilungen der Preussischen Versuchsanstalt fiir Wasser-
bau and Schiffbau, Heft 4, Berlin 1929,

4 Schmieden, C. Uber Tragfliigelstromungen mit Wtrbelablosung, Luftfahrtforschung 17,
37-44 (1940).
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An objection has been raised to Schmieden’s theory of the airfoil with
straight line profile in that the pressure is negatively infinite at the leading
edge; it is one of the requirements of the classical theory of jets that separa-
tion of the fluid from the body occurs at such points. However, in an actual
airfoil no separation occurs at the leading edge (unless the airfoil is stalled)
because the leading edge is rounded off. The infinite velocity is not a neces-
sary feature of the Schmieden theory, but only results from the sharp leading
edge which was assumed to render the mathematics feasible. Singularities of
exactly the same order are obtained from the Kutta-Joukowski theory when
applied to sharp leading edges.

In the present paper we apply the Schmieden theory to the case of two
dimensional flow around an airfoil with flap, the profile being a broken line.
Some of the results are compared with the Kutta-Joukowski theory in Figs.
2 to 5. '

2. The general results. Consider a plate whose cross section is a broken
straight line (Fig. 1). The angle of attack of the main wing may be denoted

Fic. 1.

by « and the angle of attack of the flap by a+8. Thus B is the angle of de-
pression of the flap. We assume that « is positive and that B, if negative, is
greater than —a. The velocity of the undisturbed stream (velocity of flight)
is denoted by v.,.

There will be a critical streamline which divides at the stagnation point .S,
follows both sides of the airfoil to the points of detachment, D and T, and
then to infinity as boundaries of the wake. At the points of detachment the
boundaries of the wake leave the plate tangentially.

Evidently the ratio of the lengths (chords) KT to LK must not be too
small, or else the point of detachment D will not fall on the flap. We restrict
attention to cases where the flap is long enough for D to lie on the flap—an
assumption that appears to be justified in all cases of technical interest.

The method of Levi-Civita* does not give the velocity distribution along
the surface of the plate directly in terms of the position which the point
under consideration has on the plate; but instead, both position and velocity

* For an exposition of the Levi-Civita theory in English see: Milne-Thomson, Theoretical
Hydrodynamics, London, 1938, pp. 305-316. .
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are expressed parametrically in terms of an auxiliary variable ¢, where ¢
is an angle ranging from 0 to . The explicit expressions are as follows, where
v is the speed of the fluid and s is the distance measured along the broken
line from T. (For the proofs of these formulas see section 5):

sin $(¢+¢) sin 3| ¢s—¢ | [sin 3(¢x+¢) sin } | pz—¢ l]ﬂ’*

" sin 3| r—¢| sin 3(@s+¢) [sin 3| ¢x—¢ | sin 3(¢x+9)

g f + sin }(¢1.—¢) sin’ }(¢s+¢) [sin 3 ¢x—¢|sin}(s+9)
0 sin $(¢+¢) sin }(¢x+¢) sin} | pr—o |

Here the constants ¢g, ¢s, ¢1, ¢x and ¢? depend on the dimensions of the
plate and on & and 8. The number ¢? is a proportionality factor |determining
the scale of the figure. Values of ¢ between 0 and ¢ correspond to points
on the under side of the plate while values between ¢, and 7 give points on
the upper side. The determination of the numbers ¢g, ¢s, ¢, and ¢x is the
most difficult part of the whole procedure and will be discussed later. For
the present we suppose that they are known. It will be sufficient now to ob-
serve that these four constants are angles between 0 and , whose magnitudes
are in the order written, which if used as the upper limit in (2) will yield the
positions of the points E, S, L, and K respectively. Also, the angles ¢s and ¢,
are near /2 if & and B are small.

If the integration in (2) is performed there is obtained with (1) a com-
plete parametric representation of the speed at the airfoil surface. From
Bernoulli’s theorem it is then a simple matter to calculate the pressure in
terms of the parameter ¢. If the pressure at infinity is p,, the pressure at
any point will be

1

V=19

8/
] sin ¢do. (2)

b= 0o =)+ pe @

where p is the density of the fluid.

The total hydrodynamic forces acting on all or part of the airfoil may be
found by integration of the pressure. In particular, the total moment of the
forces acting on the flap taken with respect to the hinge will be

¢E s T ds :
My = l—s—d¢o—f Ip — 5) — do, 4
= ot =9 de= | alr-9 @
where Ir is the length (chord) of the flap ET and moments in the counter-
clockwise direction are considered positive.

The resultant force on the airfoil is vertical; the drag vanishes and the
total lift is (section 9):

Y= — %wpv:cz [sin 241, — sin 2¢s + E (sin 2¢x — sin 2¢E):|-
™
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In addition to the distributed pressures there is a concentrated force
(suction) at the leading edge which acts parallel to the plate LK (see section
10). Its horizontal component must equal the horizontal component of the
resultant pressure on the airfoil, since there is no concentrated force at the
hinge K. The magnitude of the force at L is

sin $(¢1 + ¢x) sin 3(d1 — ¢E)]""

sin 3(¢x — 1) sin 3(¢1 + ¢x)

The integrations in (2) and (4) must in general be carried out numerically
or graphically. The integral in (2) has been carried out in closed form only
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for the case of a straight plate, i.e., 3=0, (Schmieden, Reference 4). The
problem is much simplified in that case by the fact that of the four constants,
¢z and ¢x do not occur and ¢r=3(r+a), ¢ps=1i(r—a). (See section 4 for
the proof).

3. Some numerical results. If the angle of depression of the flap is very
small in comparison with the angle of attack, we consider as a first approxima-
tion that 8=0. Schmieden (Reference 4) has given a diagram for the pressure

- 1.0
o= 3(3=0" —

/ &« slo: ‘3}/

xal N

1 /| 06
o _//<\ a=12° 3=0°

D 04
o

0.2

00 02 04 06 08 10

L4 =
Fie. 3.
L¢ =Total lift on flap without wake, Ir=length of flap=KT,
L¢" =Total lift on flap with wake, I =total length of airfoil= LK +K1T.

distribution in this case for an angle of attack of 12°, showing a comparison
of values obtained both with (Schmieden theory) and without (Kutta-
Joukowski theory) a wake. His diagram is reproduced in Fig. 2, together with
a similar diagram for an angle of attack of 3°.

Fig. 3 shows the effect of the wake on the total lift Lr of the flap, for
flaps of various sizes. Fig. 4 is a similar diagram for the hinge moment My
of the flap.

Fig. 5 shows the effect of the wake on the pressure distribution for the
case a=10°, 8=5° and A\=KT/LK =1.00.5

8 For the Kutta-Joukowski solution see: Schmieden, C., Die Sirimung um einen ebenen
Tragfliigel mit Querruder, Zeitschrift f. angew. Math. u. Mech 16, 194-198 (1936).

See also Ellenberger, G., Bestimmung der Luftkrifte auf einen ebenen Tragfliigel mit Quer-
ruder, Zeitschrift f. angew. Math u. Mech. 16, 199-226 (1936).
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4. The conditions for the determination of the constants. The Schmieden
hypothesis. As ¢ varies from 0 to ¢z the corresponding point in Fig. 1 will
move along the under side of the flap from T to E; as ¢ goes in succession
from ¢z through ¢s, ¢, ¢x to m, the corresponding point will move along

|

’
F

N
f

< w=12°, p=0°
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0.0 02 04 0.6 0.8 1O

X /R—-
F
FicG. 4.
My =Hinge moment on flap without wake, Ir=length of flap=KT, .
My" =Hinge moment on flap with wake, ! =total length of airfoil=LK+KT.

the under side of the plate through S to L and then back along the upper side
through K to D. Now the distance traversed on the under side between E
and L must equal the distance on the upper side from L to K. Hence, if the

integrand in equation (2) is f(¢, &, ¢s, ¢, ¢x), then

L oL .
f(¢v ¢E» ¢S! ¢L) ¢K)d¢ = f fd¢' (5)
E ¢x

If \=TK/KL is the ratio of the length of the flap to the length of the station-
ary part of the airfoil, we must have

) " jas = [ ¢:Lfd¢. (©)

Equations (5) and (6) are the two conditions on the constants imposed
by the geometry of the airfoil. A third condition is obtained from the require-
ment that the velocity must approach the stream velocity as the distance
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from the airfoil tends to infinity. The following equation is the mathematical
formulation of this condition (for the proof see section 6):

¢L-¢S+£(¢K_¢E)=a+ﬂ~ (7

™

For the fourth condition we need the Schmieden hypothesis mentioned
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in the introduction, or some alternative. The hypothesis which we propose
is a natural and direct extension of the physical assumption on the basis of
which (7) was obtained. Whatever physical principle causes the velocity to
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approach the stream velocity as the distance from the airfoil becomes large
might also be expected to cause it to approach the stream velocity as rapidly
as possible. This is our basic hypothesis; it says that the disturbance at distant
points shall be a minimum.

The general mathematical formulation of our hypothesis will be found in
section 7, and in section 8 it is shown that for our case of a broken straight
line the hypothesis leads to the condition

sin ¢, — sin ¢g + E (sin ¢x — sin ¢x) =0. (8)
mw

For 8=0 this reduces to the condition which Schmieden (Reference 4) has
used for determining the size of the wake, namely ¢, =m—¢s. Putting =0
in (7) we get ¢ —dps=a. Hence ¢ =1(r+a) and ¢ps=1(7—a).

The four equations (5), (6), (7), and (8) will determine the four constants
involved. These equations can only be solved by successive approximation.
Slide rules can be constructed for solving (7) and (8). Equations (5) and (6)
can be solved by trial, the integrations being performed either graphically or
numerically. ‘

<- plc_me
F1G. 6.

5. Proof of formulas (1) and (2) for the velocity distribution. We consider
Fig. 1 as a diagram in a complex z-plane, z=x+414y. We choose the complex
potential

w =y + W,
in such a way that the streamline ¥, =0 will be the critical streamline which
follows the surface of the airfoil and wake, with y1=0 at S.

The w plane minus the positive half of the real axis is mapped onto the
interior of the upper half of the unit circle in a 7 plane (Fig. 6) by the trans-
formation (for details see, for instance, Reference 4):

w = g2 (cos os — %(T + %))2 9
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The radii from —1 to 0 and from 0 to 1 in this 7-plane correspond to the free

streamlines. The points on the unit circle with arguments ¢, ¢s, ¢, and ¢x

correspond respectively to E, S, L, K. The number a is a constant.
Consider the complex velocity

= gp—if

% ve~ ™, (10)
Along the real axis in the 7-plane between —1 and +1 the speed v must be
constant and equal to v, the undisturbed stream velocity. Along the succes-
sive segments of the unit circle between the points 77, E, S’, L', K’, and D’,
the angle # must have the respective constant values —(a+f), —a, T—a, —a
and — (a+p). It will now be shown that the following expression for the com-
plex velocity will satisfy these conditions:

— p—id i¢ — pid, —_ p—id i$ — pid, Bl
dw — peiatt (r . L)eitL(r , e .S)-I:(T e. &) ek (T . e -E)] . an
dz (r — eL)(r — e ¥s)ei®s (1 — €¥x) (1 — e ¥r)eitx

We use that determination of the bracketed quantity to the 8/m power whose
argument vanishes for 7 = 1. The absolute value of this expression is obviously
constant and equal to v, if 7 is real. For 1 =¢* on the unit circle we make use
of the identity

eid’ —_ e‘¢' = e“(¢+¢')(e,i(¢_¢’) —_ e"‘*i(¢_¢'))
= 2ie’i(¢+¢') sin %(d) _ ¢')
to rewrite our expression in the form

dw sin 3(¢ + ¢1) sin 3(¢ — és)

—_— = vwei(ﬂ‘f'ﬁ)

dz | sin 3(¢ — ¢1) sin (¢ + ¢s)
.[Sin 3(¢ + ¢x) sin (¢ — ¢E)]ﬂ"
sin (¢ — éx) sin 3(¢ + ¢x)d

where the determination is chosen to agree with that in (11). If ¢ is between
0 and ¢ each factor involving the sine of a difference is negative, all the nega-
tive signs will cancel and the argument of the whole expression will be a+8;
hence 0= — (a+8) as desired. If ¢ is between ¢z and ¢, the quantity inside
the brackets will be negative and have an atgument —; hence the entire
expression will have an argument «. In this way all the prescribed values of 8
may be verified. Since our expression for dw/dz is analytic and not zero in-
side the upper half of the unit circle in the 7-plane and satisfies the required
conditions for v and 6§ on the boundary of that semicircle, it follows that the
flow around our airfoil is thereby correctly determined. If we take absolute
values of both sides of (12) we get the required formula (1). Also, from (9),
for r =e'¢,

(12)
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dw
i a*(cos ¢s — 3(r + 1/7))(1 — 1/7?)
.
— 2a%(cos ¢s — cos ¢)e~*% sin ¢
= 4a%e* sin 3(¢s + ¢) sin 3(¢s — ¢) sin ¢. (13)

Since dz = (dz/dw) (dw/dr) dr, we have

[

1|dw
1dz|=——‘ld¢|- (14)
v | dr

Now ds will have the same sign as d¢ if ¢ is less than ¢, and opposite signs
if ¢ >¢L. We can therefore get ds from |dz| by removing the absolute value
signs around d¢ and around the quantity ¢, —¢ in the expression (1) for w.
Hence (2) follows immediately on substituting (1) and (13) into (14), in-
tegrating, and setting ¢2=a?/v,.

6. Proof of equation (7). We need only observe that the complex velocity
must approach v,, as 7—0. Putting =0 in (11) we get

Vo = Uppei(aHBgmidreits[¢—itkeitr |B/m,

which reduces at once to (7). .
7. Formulation of the hypothesis of minimum disturbance at distant
points. Consider the function :

dz Voo
w(r) = In ('vm —) = ln— + 8. 15)
dw /
This function is regular within the upper half of the unit circle and continu-
ous on the diameter formed by the segment of the real axis between —1 and
+1. It is also pure imaginary on this diameter. Hence it can be continued
into the lower half of the unit circle by reflection of ‘w(7); and w(r) will then
be regular within the entire unit circle.

Expanding w(7) in a power series we get

dw

— = g (M = g @ (0= (01w ()72

dz

vw{ — O + (WO - @) S - - } (16)

Here we have put w(0) =0, which is the condition that the velocity equals v,
at infinity.

In all cases discussed in detail by Schmieden and in the present paper,
the flow is uniquely determined by the condition

w'(0) =0, 17
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Hence, there is one and just one flow for which -

dw

— — Y ~T" as 70

dz
for n=2; for every other flow n=1. Since 7—0 as z—x (for points outside
the wake), dw/dz will approach v, at a maximum rate as 2—« if the flow
satisfies (17). Thus (17) ‘is, for the cases under consideration, the desired
mathematical formulation of our hypothesis that the disturbance of the main
stream at infinity shall be a minimum.

Equation (17) would be insufficient to determine a unique flow if one of
the two points of detachment of the wake had not been determined a priori.
Thus in the case of an airfoil with sharp trailing edge, one point of detach-
ment is placed at the trailing edge; for the case of a circular cylinder, the two
points of detachment are assumed to be symmetrically placed. Situations can
be imagined, however, such as an airfoil with blunt trailing edge, where
neither point of detachment could be determined in advance. In such a case
one can have a still smaller disturbance of the main stream at infinity (i.e.
n=3 in the above asymptotic formula) by imposing in addition to (17) the
condition

w"(0) = 0. 17)

For symmetric flows this last condition is automatically satisfied whenever
(17) holds. '

The theory predicts the following sequence of events as one passes con-
tinuously from the case of a circular cylinder to an inclined plate by way of
elliptic cylinders with increasing eccentricity but with major axis having a
small constant inclination with the direction of the stream: for small eccen-
tricities (and very high Reynolds numbers) both w’(0) and w”(0) vanish, both
the drag and lift are zero (see section 9), and the disturbance of the main
stream at distant points is the least possible. As the ellipse becomes flatter
and the trailing edge less blunt, the local viscosity and pressure conditions
at the. trailing edge gain control over the lower point of detachment of the
wake, the condition (17’) is lost, and a corresponding lift is developed. The
flow in this state corresponds to that in the normal flight of an airfoil. For
still flatter ellipses or higher angles of attack or lower Reynolds numbers, the
local conditions around the leading edge gain control of the upper point of
detachment, the condition (17)is also lost, and there is a positive drag propor-
tional to w’(0) and a positive, although much smaller, lift. In this state the
airfoil is clearly stalled. Thus the development of a lift and of a drag mark
abrupt changes in the state of the flow associated with the loss of the condi-
tions (17') and (17) respectively; and there is a critical range of Reynolds -
numbers marking the effect of local conditions which determine the transi-
tions from one type of flow to another,
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8. Proof of equation (8). Consider the expression
wi(7) = In (r — %) — In (7 — e~i%1),

where ¢, is an arbitrary constant angle. Then

wi (7) = R S
T— e 17— i
, 1
B T T A
w{ (0) = — et 4 ¢i®1 = 24 sin ¢,
@"(0) = — %1  ¢?i41 = 2i sin 2¢.

Now from (11) it follows that w(7) is the sum of a constant and constant
multiples of expressions of the form w;(r). Hence

@'(0) = 24 [sin ¢ — sin 5 + E- (sin ¢x — sin ¢E):|,
iy (18)
»"(0) = Zi[sin 2¢5, — sin 2¢5 + — (sin 2¢x — sin 2¢E):|.
T

Equation (8) is an immediate consequence of the first of these equations and
our hypothesis (17).

9. The total drag and lift. According to the Levi-Civita formula, the total
drag on the airfoil is proportional to w’(0). From our hypothesis (17) it fol-
lows that the drag is zero. In fact, in the case under consideration our hy-
pothesis is equivalent to the condition that the drag vanishes. However, in
other situations such as the case of a finite wake discussed by Kolscher
(Reference 2), the two conditions differ.

The total lift may be calculated from the Levi-Civita formula

2 2, 2 2
Y = impvec iw"(0), ¢ =a /vy

and (18) to be

V=— %rpvicz [sin 2¢1 — sin 2¢5 + E (sin 2¢x — sin 2¢E)].
s

For 8=0 this reduces to the Schmieden expression

2 2
YV = wpvc sin a
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10. The concentrated forces at L and K. Consider the flow around a
corner K with arbitrary angle ur, 0 <u <1. Draw the small circle C of radius r
about K. The finite force at K, if any, will be obtained by applying Euler’s
momentum theorem to the fluid inside C and taking the limit as 7 approaches

F1G. 7.

zero. In Fig. 7 we show the fluid as a free body, where — Fis the reaction of

the concentrated force F on K.
We have

F — npds=pfn-v'uds,
C+AKB c

where 7 is the inward unit normal.
It is assumed that the stagnation point S is not at the corner. Hence
for small 7, setting A=p/(14+p), 0SN=Z3,

dw
— = k/(z — K + 0(r) ‘ (19)
dz

where % is a constant and 0(r'~2) is a quantity such that 0(r1—2) /7= ig
bounded as r—0. Hence if we put z—K =re®¥,
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It

9 = I kl = 4 0@, 22 I b |2 o 4 0(71;3)‘),
e = (| k| /k)e™ + o(r=2), p=— 3| E2or 24 00),

where e=0if A<1/3, =1—-3\Nif A>1/3, and o(»' ) is a quantity such that
o(r'=2) /ri=*—0 as r—0.

Now
K r r
f npds = — in| k|2pf r~dr + ;lf 0(r°)dr.
A 0 0

Both these integrals tend to zero with 7 if u <1. If u=1, this integral and the
corresponding integral along KB both diverge, but since, in this case, the
pressures along AK and KB are directly opposing, it is permissible to use the
principal value of the integral along 4 KB. With this understanding we may
write

f npds = — %ﬁl| k|2pf (r—1— r*l)dr—f-f 7 0(r°)dr,
AKB 0 0

where 7, is the normal to AK. Both these integrals tend to zero. For the
arc C,

w(14u)
fnp ds = — % k'l""pf rD+1gi=m gy, +f 7 0(r°)ds. (20)
c 0 (o}

These integrals also approach zero; the first integral is zero if p=1.
The Euler momentum theorem thus reduces to

F= um,,f,;.;;ds.
c

r—0

But cos (n, v) =cos (Y —0—m), T=ve’,

e P . p o
Pf n-ovvds = — —f 22ei¥ds — _f 92— iVe2i0ds.
(o} 2 C 2 o]

The first of these integrals is similar to (20) and will approach zero for the same
reason. For the second integral,

— w(1+n) | B2 k|2
— ifv%“*emds = __if u_e—iwl___l_eziw,d‘l, — ifo(rl‘“)ds.
2J¢ 2 J, R 2Je¢

22

The last integral approaches zero. The first integral also approaches zero if
p<1.If u=1, however, its value is not zero. Evaluating this integral we get
finally

. | k]t
F — 2 f uw=1,
21
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We have thus proved the general result that for a concentrated force to
exist at a corner which is not a stagnation point the corner must be a cusp.
In particular, there will be no concentrated force at the hinge K. The con-
centrated force at the leading edge may be found by evaluating %, giving

sin 3(¢1 + ¢x) sin 3(¢1 — ¢E):|B/’
sin 1(¢x — ¢L) sin 3 (¢ + o&)

where, as before, ¢?=a?/v,. The direction of the force is parallel to the plate
LK and toward the left. In the case 83 =0 this reduces to

- 2 2 —ia , 2 L2
F= —dprvce ** sin ¢or sin i(¢r — ¢s)[

- 2 2 —ia , 2
F = — pmv.ce sin «,
which agrees with the expression given by Schmieden (Reference 4).

11. The width of the wake. It will now be shown that under the minimum
hypothesis (17) the width of the wake tends to zero asymptotically as the
distance from the airfoil becomes infinite.

We have as in (16)

dz 1 1
_—__ew(r)—_[l + «"(0) __|_w”/(0)_ :I
dw Vo Voo
Also
dw ) 2(1 1 1 s 1 )
——=—a|\- - — —cos COS pg — —
dr 2 73 7 § ¢ 2 ’
Hence
.Y 42[1 1 1 N W"(0) 1 +0(1)]d
g = ——dr= — —| — —'— — cos —
dw dr ! Tl 2 73 72 ¢s T !
Integrating:

, er 11 &"(0)
z=C1+zC-2——|:————+——cos¢s+ 1nr+0(7)],

Voo 4 72

where C; and C; are real constants. This expression is of the form
A B o o
Z=C1+1C2+—2+—+iD1nT+O(T)
. ™ T . ,

where 4, B, and D are real constants and A4 is positive. For 7 real and positive
this will give the coordinates of a point (x1, y1) on the lower boundary of the
wake:

x1=C1+;+7+0(‘r), (22)

y1=Cy+ Dlnr+ 0().
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If 7 is negative we put 7= —7’ where 7’ is positive and obtain in like manner
the coordinates (xs, ¥2) of a point on the upper boundary of the wake:
Cit o m 2 aD 40
x9 = (} —_— - 7),
? P 7’ (23)

Y2 = Cz + D In TI + O(T,).

Consider the particular values of 7 and 7’ defined by the equations

1 —B++B*—44(C:— )
P 24 ’
1 B4+BE—44Ci— D=1
o 24 ’

where ¢ is a large real positive parameter. As ¢ becomes infinite both 7 and 7’
tend to zero through positive values. Substituting these expressions into (22)
and (23) we get '

X — X1 = O(T’) - 0(1),
— B4+ /Bt — 44(C, — ?)

Yo — Y1 = D 1n + 0(1") - O(T)
B+ /B —44(C, — nD — 1)

As t— o both these differences approach zero; hence the width of the wake
tends to zero.

12. Details of the calculations. In the numerical calculation of pressure
distributions, the evaluation of the constants is the most time consuming.
As mentioned previously, it is a simple matter to construct slide rules for
Egs. (7) and (8). It was also found to save time to evaluate the integrals
in (5) and (6) graphically. Templates were constructed for the functions
log sin ¢, log sin ¢/2, and B8/= log sin ¢/2. By properly adjusting the phase,
one can quickly draw from these templates the curves log sin 3(¢ —¢1),
log sin $(¢+¢1), B/7 log sin 1(¢ — k), etc. By addition and subtraction of the
ordinates thus obtained one gets the logarithm of the integrand, and hence
the value of the integrand itself from a graph of the logarithm function.
The integral can then be found either graphically or by means of a planimeter.
The pressure distribution shown in Fig. 5 and the associated points in Figs.
3 and 4 were calculated in this way. '

If the integrals in (5) and (6) are computed numerically, the infinite dis-
continuities of the integrand at ¢z and ¢x are troublesome. There is not
actually a discontinuity at ¢, but the integrand goes to zero so abruptly
near this point that it is convenient to treat the point as if it were a discon-
tinuity. The usual method of “subtracting off” the discontinuity is unsatis-
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factory because the result will be an abrupt zero of the type just mentioned.
The following procedure was used as an alternative: after isolating the dis-
continuity (say at ¢,) at the center of a small interval (¢1—36, ¢1+4), and
approximating the sine of an angle by the angle, the integrand reduces to
the form g(¢>)|¢>—¢ul *, where » is some constant and g(¢) is continuous (and
smooth). A linear transformation will change this integral into one of the form
f:l§(¢')|¢’ |"d¢’. One can then approximate g(¢’) by a quadratic function
of the form a¢’24b¢p’+c by interpolating to the values of gat —1, 0, and +1;
and the resulting integral is easily computed. The final result is a formula
for the original integral in terms of the values of g at ¢1— 4, ¢1, and ¢+ 8
which is strictly analogous to, and in fact is a generalization of, Simpson'’s
rule.



