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ON THE DEFLECTION OF ANISOTROPIC
THIN PLATES*

BY

VLADIMIR MORKOVIN
Brown University

1. Introduction. The elastic medium considered in this paper1 is assumed
to have at each point at least one plane of elastic symmetry parallel to the
neutral plane of the plate, which is taken as the xy plane. The theory of bend-
ing of thin plates possessing this type of anisotropy has been developed
mainly by Boussinesq,2 Voigt,3 and Lechnitzky.4 It is based on the usual as-
sumptions of thin plate theory, leading to the following relations which are
valid throughout the (small) thickness 2h of the plate

Tzz = 0, (1-1)

dw dw
u = — 3 > v = — z > (1.2)

dx dy

where w denotes the (small) deflection of the neutral surface of the plate,
while u and v are the displacements in the x- and y-directions respectively.

If the equilibrium conditions are used together with Generalized Hooke's
Law, (1.1), and (1.2), it is possible to express5 the quantities characterizing
the state of stress in terms of the partial derivatives of the deflection w. Then
by considerations of equilibrium w is found to satisfy the differential equation:

d*w d*w d*w d*w
bn b 3Ji6 -—  b 2(&i2 + bu) ;———o + 3bn

dx4 dx3dy dx2dy2 dxdy3

d4w 3q(x, y)
+ b22 — = HK , (1.3)

dy4 2h3

where ba are constants depending upon the elastic material and q(x, y) is
the normal load per unit area on the upper face, the lower face being free.

The problem, therefore, is to find a solution w{x, y) of (1.3) which satisfies

* Received Nov. 18, 1942.
1 The author wishes to express his appreciation to Professor I. S. Sokolnikoff, who proposed

the problem and suggested the manner of approach.
5 M. J. Boussinesq, Journal de Mathematiques (Liouville) Ser. 3, 5, 329 (1879).
3 W. Voigt, Kompendium der Theoretischen Physik, Leipzig, 1895, pp. 436-455.
4 S. G. Lechnitzky, Applied Mathematics and Mechanics, Leningrad, 2, 181-210, (1938).
6 An exposition of the theory is given in I. S. Sokolnikoff's Mathematical Theory of Elas-

ticity, (mimeographed, Brown University, 1941), pp. 319-329. His notation is adopted in the
present discussion.
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the prescribed conditions at the boundary (edge) Co of the neutral surface of
the plate. This general problem has not been solved even in the case of very
simple boundaries. Some success was achieved by various writers6 investigat-
ing special shapes of plates made of material with three mutually perpendicu-
lar planes of elastic symmetry (orthotropic material). In the present paper a
general method of solution is indicated when the boundary Co is an analytic
curve. Detailed solution, illustrating the procedure, is carried out in the case
of a clamped elliptic plate and a polynomial loading function q(x, y). The
complicated form of the solutions obtained is due to the generality of the
problem. For a given material the values of the parameters in (1.3) are
specified and the computations become relatively simple.

2. Preliminary considerations. Utilizing the fact that the potential energy
of any realizable state of stress is always nonnegative, Lechnitzky7 proved
that the roots of the characteristic equation

bn + 3ii6 m + 2(bn -f- + 362e Ms ~f~ ̂22 M4 = 0 (2.1)

corresponding to (1.3), must be conjugate complex numbers, say,

Mi = <*1 + iP 1; M3 = Mi = on — ifl 1; j8i 5^ 0; ^ ^

M2 = <22 + if}*; M4 = M2 = «2 — »/32; 02 ^ 0.

Consider the complex variables Zi and z2, related to x and y as follows:

zk = x + nky = (* + aky) + i(pky), k = I, 2. (2 .3)

This formula specializes to z0, the complex variable in the original xy plane
when no = i- The relationship between the complex plane of zo and that of Z\
or z2 is

Zfc = pk%0 + ([kZ0, k = 1, 2, (2.4)

where

pk = 5(1 ~ »M/fc) and qk = J(1 — ipk). (2.4a)

Geometrically, (2.4) corresponds to affine transformations of the Zo plane.
Since /3a5^0, these transformations possess inverses, given by:

1
z0 (pk^k QkZk), k 1, 2. (2.5)

Pk

Let Wo designate a particular integral of (1.3). Lechnitzky8 has shown that
the most general solution of (1.3) can be expressed in the form:

6 For instance, M. T. Huber, Probleme der Statik technisch wichtiger orthotroper Platten,
Warszawa, 1929; W. McDaniels, thesis, University of Wisconsin, 1940; S. G. Lechnitzky,
loc. tit., under assumption of vanishing normal load q(x, y).

7 S. G. Lechnitzky, loc. cit. 8 S. G. Lechnitzky, loc. cit.



118 VLADIMIR MORKOVIN [Vol. I, No. 2

w = /i(30 + /i(zi) +72(22) +72(22) + Wo, (2.6)

where fk(zk) are arbitrary functions of zk, and f{zk) are their conjugates. These
functions are analytic in the regions which correspond through (2.4) to the
region occupied by the plate. If the roots /ui and nz in (2.2) are not distinct,
the solution w assumes the form

w = zi/i(zi) + zi/i(zi) + gi(zi) + gi(zi) + w0. (2.7)

When the region in the xy plane is simply-connected, these analytic func-
tions are also single-valued. The present discussion will be confined to simply-
connected regions bounded by analytic curves Co. Let the parametric repre-
sentation of the boundary be:

C0: zo = x + iy = Fi(i) + iF%(i), 0 ^ t < 2ir. (2.8)

The period of the functions F„{t) is 2ir; their Fourier coefficients are

1 r2x 1 r2r
dns — — I F,(t) cos ntdt; ens = — I F,(t) sin nt dt. (2.8a)

7T J 0 7T J 0

The boundaries of the corresponding regions in zk planes, by virtue of (2.3),
are

Ck'. zk = Fi(t) + iiicF2(t), k = 1, 2. (2.9)

It should be noted that the homogeneous deformations (2.4) and hence
the contours Ck are determined at the outset by the anisotropy of the plate.
The controlling parameters are five in number, namely bn, &ie, (&12 + &66),
&26, &22, or in, Jxi, /3i, a2, ft-

3. Outline of procedure. The form of the solution (2.6) suggests that some
simplification could be achieved by considering the boundary conditions di-
rectly in the z* planes. The boundary conditions usually consist of two func-
tional relations between the deflection w and its partial derivatives of at most
third order on Co

dw dw d3w\

dx dy ' dy3)

If one regards zk and zk as the independent variables, then

1 = 0, n = 1, 2. (3.1)

d d d d d d
— = - 1- -—; — = Hk b Hk — • (3.2)
dx dZk dzk dy dZk dzk

Hence, the boundary conditions (3.1) can be formulated along either Ci or C2:

k / dw dw dsw\
Gn[w, ,  >•••,  =0, n, k = 1,2. (3.3)

\ dzk dzk dz\)
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It is desirable to express the boundary conditions in terms of a single
variable. To effect this, suitably chosen neighborhoods of contours Ck in Zk
planes are mapped conformally into some neighborhoods of circumferences yk
of unit radius in new complex ft planes in such a way that points on Ck cor-
respond to points on yk.9 Let <pk represent the polar angle in the planes.
Identical values of <pi and <p2, 0g^>2<27r, can be made to correspond to one
and the same value of the parameter t on Co, 0^t<2ir, by the proper choice
of the mapping functions

Zk = «*(f*)> k — 1,2. (3-4)

Laurent expansions for c*k(%k) are found in terms of the Fourier coefficients
of F,(t). Let the common value of ft and on yk be denoted by o- = ei*'; then
by virtue of the relations

d Id d
dZk u>k{$k) d£k dZk <i>k(fk) df k

the boundary conditions (3.2) can be expressed in terms of <r alone:

(3.5)

dw dw d3w\
  ) = 0, n- 1,2. (3.6)
d<r da do3/

The deflection w may have the forms

w — $i(fi) + <£i(fi) + ^2(^2) + 02(^2) + w0, (3.7)

w = wi(fi)0i(fi) + oji(fi)0i(fi) + ^i(fi) + ^i(fi) + Wo, (3.8)
where

4>k(Zk) — fk{uk($k)} and iA*(ft) =gk {"^(f*-)}

are undetermined functions, analytic and single-valued in some neighbor-
hoods of yk- Accordingly one has

+00 +00

<t>k(£k) = X) I tkitk) — XI Bmk$k ■ (3.9)
—00 m——00

Expanding T„ in (3.6) into powers of cr and equating coefficients of like powers
to zero, one may expect to obtain recursion formulae for the determination
of the coefficients Amk and Bmk in (3.9). This, in essence, solves the problem.

4. The mapping functions. The mapping functions «4.(ft), if they exist,
must be analytic and one-valued at least in narrow rings around the circum-
ferences yk where they can be represented by convergent Laurent series, say

+00

2* = Ditw£k , k — 1,2. (4.1)

9 This will be recognized as an extension of the scheme of N. I. Mushelisvili. See Mathe-
matische Annalen, 107, 282-312, (1932).
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The correspondence between points on the curves Ck and yk is expressed
through the equation

+00 +00

Ck: zk = 23 Dkmck = ^ Dkm(cos m<pk + i sin m<pk). (4.2)
m=—00 m=—00

The parametric representations of Ci are:
00

Ci,: zk = |(^oi + Hkdav) + 23 {(^»i "t" Vkdnz) cos nt + (eni + Hken2) sin «/}. (4.3)
n==l

Letting identical values of <pi and <£>2 correspond to the same value of the
parameter t, tpk — t, one can solve for the coefficients Dkm from (4.2) and (4.3):

Djcn — 2 | (dnl ~f* &kdn1 ~f" ftkGnz) ^(^nl ~1~ Otken2 fikdn2) J ,
( . ) (4.4)Dk,-„ — §|(^ni + akdn2 — /3ke„2) + i(e„i + <xke„2 + Pkdn2)\, n 2: 0.

It will be shown presently that

lim ?/1 Dk~I <1, lim | < 1, (4.5)
n—► 00 n—»<»

so that series (4.1) with coefficients (4.4) actually converge in some rings
around yk and the foregoing formal steps are justified. The proof rests on the
following theorem:10

The necessary and sufficient condition that the periodic junction f(z) defined
by the series

00

haa + 23 (a» cos nz + bn sin nz)
71=1

be analytic in some strip parallel to and containing the real axis is

lim \/(a* + b%) < 1 or lim v/| an + ib„| < 1. (4.6)
n—»00 n—»«

The functions F,{t) = %dos +23;= i(dns cos nt-\-ens sin nt), 5 = 1, 2, are by hy-
pothesis (real) analytic functions. Hence the functions defined by the series

1 00
— 23 {(dm + otkdnt + Pken2) cos nt — (eni + akeni — /3kdn2) sin nt),
2 n=l

(4.7)} 00 v '

~ 23 {(d„ 1 + akdn2 — fiken2) cos nt + (e„i + ake„2 + flkdn2) sin nt \,
2 n=l

are also (real) analytic. Replacing t by the complex variable z which reduces
to t on the real axis, one is led to complex functions, satisfying the conditions

10 This is a slight modification of a theorem found on pp. 125-127 of De La Vallee Poussin's,
On the approximation of functions of a real variable and on quasi-analytic functions, Rice Institute
pamphlet, 1925.
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of the preceding theorem. But since (4.6) applied to the functions (4.7) im-
plies (4.5), the existence of regions of convergence of (4.1) containing yk is
shown.

These regions can be narrowed to rings about11 7* in which the deriva-
tives of the mapping functions have no zeros so that the functions themselves
are simple (schlicht). The representations of the narrowed regions on the cor-
responding bands about Ck are therefore one to one and conformal as desired.
The foregoing discussion can be extended to any number of planes zk■ If, for
instance, one sets fJ.o = i, one obtains a function w0(ro) mapping conformally
the original curve Co together with a surrounding band into 70, the circum-
ference of unit radius in a new plane, and its neighborhood.

5. Mapping of elliptic regions. The procedure described in the preceding
section constitutes a practical scheme for the determination of the mapping
functions Uk($k) once the shape of the plate is known. In the case of the ellip-
tic boundary

Co: 20 = a cos t + ib sin t, (5 .1)

formulae (4.1) and (4.4) yield the mapping function

Zk — Uk(tk) — Sk(^k H (5*2)

where
rk

Rk ) Tk ^(^ » $k ~ "2^
Sk

It follows from elementary considerations that the deformed contours in Zk
planes

Ck: zk = a cos <p + nkb sin <p (5.3)

are ellipses whose major axes make angles 8k with the real Xk axes, where

2 ctkPkb2 , ,
tan (25*) =  — = am {4r»s*}. (5 .4)

o2 + b\al - 0f)
It also follows from (5.2) that the families of circles concentric with 7* in the

planes correspond to the families of confocal ellipses with foci at 2 VrkSk
in the Zk planes. In particular, to the circumferences 7k correspond the ellip-
tical contours (5.3) and to the smaller12 circumferences with radii \Z\Rk\, the
degenerate ellipses of the families, i.e., the double segments joining the foci.
These degenerate ellipses can be represented in the form

11 7k may well be the outer boundary of these annuli when the derivatives F[ (t), s = l, 2,
vanish simultaneously. Thus the class of curves to which this discussion is applicable is some-
what larger than the class of analytic functions as usually defined.

12 If in and ix2 are defined to be the roots whose imaginary parts are positive, /3a>0, then
vnsici.
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Zk = 2VJ/kSk) cos (.p — b'k) (5.5)

where 5/ are the amplitudes of \/Rk, the plane images of the foci 2\/rkSk-
Since the derivatives w* vanish only at VRk, one may choose for the rings
in which the mapping functions are to be schlicht the annuli 1 ̂  £"&<•>/
The corresponding regions in Zk planes comprise the interiors of the ellipses Ck
made doubly-connected by the introduction of slits (5.5) between the two foci.

From (5.5) it is clear that every point Zk on the slit corresponds to two
distinct points, \Z\Rk\eiv and v/|-R*;|ei(2S*~*'\ on the inner boundary of the
above ring. Since the analytic functions fk(zk) are single valued inside Ck,
the transformed functions <t>k($k) must assume identical values at the two
points. Hence,

-f-oo -f-00

Yj AmkV~ \Rk\m eim* = X) A<nkV | Rk\™ (5.6)

so that

and finally

■^4— it,k Rk-^nki fl 0,

<t>k(tk)

n n

= ix*(Vi+^); Mh) = (s.?)
n=0 \ ft / n-0 \ f* /

The question arises whether the restriction (5.6) is sufficient to insure that
the functions Fk{zk) obtained by the inverse transformation

ft = — [zk + V(zl — 4 rksk) } (5.8)
2 sk

from the functions <t>k($k) in (5.7) are single-valued in the full, simply-con-
nected interiors of the ellipses Ck■ An affirmative answer is reached after ap-
plication of Schwarz's Reflection Principle to the potentially different branches
of Fk(zk) on the opposite sides of the slits. Therefore, if the unknown coeffi-
cients in (5.7) are determined from similarly transformed boundary condi-
tions, the resulting functions will correspond to the solutions of the original
problem.

6. Uniqueness of solutions. If in (2.7) the functions/i(zi) and gi(zi) were
replaced by/i(zi)+/i*(zi) and gi(zi)+gi*(zi) where

Re{zif*(zi) + gi*(zO} =0, (6.1)

the value of w would remain unaltered. The extent of arbitrariness in the
choice of /i(zj) and gi(zi) is determined next by finding the most general
analytic functions/*(zi) = U\-\-ivi and g*(zi) =«2+^2 satisfying (6.1), or the
equivalent condition



1943] ON THE DEFLECTION OF ANISOTROPIC THIN PLATES 123

X\Ui + yiVi + w2 = 0. (6.2)

Utilizing the fact that U\, t>i, u2, and Vi are harmonic functions, conjugate in
pairs, one readily finds from (6.2) that

dui dvi— = 0,  = 0,
dxi dyi

and therefore

/*(zi) — Xi«Zi + (X2 + i\ 3), (6.3a)

where Ay are arbitrary real constants. Substituting this expression into (6.1)
one arrives at

g*(zi) = — (X2 — 2X3)21 + iX4. (6.3b)

The foregoing functions are transformed by (5.2) into

0*(f 1) = Xiisi^fi + —^ + X2 + 1K3;

^l*(fl) = — (X2 — ^ + i\ 4.

(6.4)

It is desirable to eliminate the arbitrariness inherent in the form of solutions
by choosing the parameters Ay so as to simplify the expansions (5.7) of <£i(fi)
and If

-2 Im , ( , ,
Xi = ; X2 -f- iX3 = — 2A 01; X4 = 2 Im {B01};

a> + b()i

the functions c/>i+<£* and \p\-\-\p* reduce to

+ and + (6.5)
n=l \ / n=0 \ /

with Au = An and B0i = B0i- That the solutions of the form (6.5) are uniquely
determined by the boundary conditions is shown in Section 8.

A similar argument shows that one needs to consider only the functions

00 71 00 71

$l(fl) = -) \ <£2(^2) =  (6.6)
n—0 \ ) n-2 \ f J /

with A01 = A01 and An^An, when the roots /ui and are distinct.
7. Boundary conditions. Let 6 designate the angle between the outward

normal to the boundary Co and x axis. Then,
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1 1
sin 6 =   (dz0 + dzo) = (ipkdzk — inkdzk),

2 ds 2 ds/3k
(7.D

1 1
cos 6 = (dz0 — dz0) =  (dzk — dzk),

2 ds 2dspk

where dzo and ds are differentials along Co and dzk the corresponding (depend-
ent) differentials in the zk planes. The equations (7.1) and (3.2), together with
the mapping functions (3.4) make it possible to formulate the boundary con-
ditions in terms of a on the circumferences In the case of a clamped plate
one has the conditions:

/ 9 d \
= I cos 6 h sin 6 ■— ) w(x, y) = 0, (7 .2)

\ dx dy)

dw / 3 d
w(x, y) = 0,

dn \ dx dy

on Co, which are equivalent to the vanishing, on of the expressions13

w(a, a) = 0, (7 .3a)

i da rf 1 <04 (a) ) dl da l~ f 1 u>k (a) "J
— - — S a(pkpk + qkqk) H —- 2pkQk >

pka ds L (. a (a) J da

( o^k (c) 1 ) d "I
+ ^ cr 2pkqk H (pkpk + qkQk) ?■—: \w(a, a) = 0, (7.3b)

I ua (a) a ) da J

where da is dependent on dz0. Obviously, to the part of w(<r, a) obtained by
transformation of/,(z,) and gi(zi) one applies the operator in (7.3b) with k=i.
It is expedient to make use of the mapping function 30=^0(^0) for the trans-
formation of the particular integral w0. When &=0 the operator in (7.3b)
reduces to

i da ( d 1 d \
 -(o-- 1 z)w0(a,a), (7.4)

a ds\ da a da/
and (5.2) has the form

/ 1 \ a b
Zo = Wo(fo) = — b) ( k^o H ), k2 =   (7.5)

\ fo/ a - b

If the normal load q(x, y) in (1.3) is expressed as a polynomial14 in x and y
of degree («i — 4), w0 is a polynomial of degree n\. For instance, when the load
is linear

2h® \
q(x> y) = — (Co + CiX + c2y), (7.6)

where are real parameters, one can take for w0,

13 It is noted that, as a consequence of (3.2) and (3.4), a and "a are treated as independent
variables in the partial differentiation process, whereas the result can be simplified by a=l/a,
an identity on 7*.

14 This may be considered as an approximation to more complicated loading functions.
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w0(x, y) = ———-x* + 777— + TT~y6- (7.7)
4! bn 5! b 11 5! b22

The following abbreviations referring to values on the original curve Co but
expressed on yk are introduced:

wo = — K(o) = — ^ (bmom + bm —

"1 / 1 \
L(^(t) — ^ ~1~ ) •

0 \ W

(7.8)
Js 3j»o

2 (7  
da dn

One readily finds the coefficients am and bm for the special case of the linear
load applied to an elliptic plate:

/cxtt3 _ c2b3\

! \ b 11 622 /

4ba3co 5ab (C\a'■
0.4 = \ a 5 = — 

244 !bn 25 5
a 0 = 3a4, o2 = 4a4; «3 = 5d6, ii = 10a6, (7.9)

a a
^2m = #2m] (^2m-fl i ^2m+1) = ~ (<^2m+l i ^2/n+l) •

4b 5b

The preceding transformation of the particular integral w0 is valid whether
the deflection w has the form (2.6) or (2.7). However, the parts of w involving
the unknown functions fk(,Zk) and gk{zk) have to be treated somewhat differ-
ently in the cases of equal and distinct roots. To avoid repetition only the
first case is discussed here.

8. The case of equal roots. Substituting'5 (3.8) into the boundary condi-
tions (7.3a) and (7.3b) and simplifying gives:

^ + ip{a) + 1^ = K(c), (8.1a)

1r, v 1 w 1— <r(pp + qq) H —— 2fq
p L cr co (a) J

■ [. ^^ + u'(o)<i> ̂ + i'(o-) J
l r «'(ff) l 1

+ Tr /iv 2^ + ~(PP + 1$^ ,(i) • J

• ̂ «(c)^' (~^j + ^= -z-((r)- (8 ■ lb)

15 In this section the subscripts are omitted since the distinction between Zi and z2 planes
is not involved in the discussion.
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In order to avoid a system of an infinite number of equations in infinitely
many unknowns the following device is used. The condition (8.1b) is replaced
by a combination of (8.1b) and (8.1a). The first boundary condition (8.1a)
is an identity in a and will therefore yield an equality upon differentiation
with respect to <r. This equation is multiplied by

| cr2co'(cr)
2 p + (pp + qq)

and added to (8.1b). In the resulting identity, one solves for the expression
involving the unknown functions and obtains16

^ v4>'(o) + aw'{a)4) ^ + <7 )

(8.2)

= W P 2 )
2 I p _ / 1 \ q / 1 \ /

—w' (—J + qaco'(c) paio'(a) + -—co' I—J

' {T "' (7) + (tf +«?))} •
When the plate is elliptic, (8.1a) and (8.2) read:

,(± +1.) +,(,+£.) +

/ _R">\ • _ / 1 _ \+ ?s-('"+^) + F"fc+5"''*)
= Z + hm —V (8.3)

0 \ W

£ mA^ -^ + s(<r-^±Am(±n +

" / 1 r pa2 q 1
+ TlmBm(am ) =     - 

0 V <Jm ) + b) L 1 - <r*/k2 1 - 1/4V J

. £ j ^ Ra^j ^ + § { {b — ijla)a

4 (b + ipa) } X m (bm<rm ' 5 m -4a)

16 The expressions in the denominators, 1 /fi(paw'(a) -\-q/o w'(l/er)) and \ /(i(p/a i>'(1/cr)
+g<r«'(cr)), never vanish, since pj>—3J = /3^0.



1943] ON THE DEFLECTION OF ANISOTROPIC THIN PLATES 127

For a circular plate a=b, 1/&2 vanishes, and the last equation is already ex-
panded in series of powers of a. Otherwise, the expansion of the right hand
member is infinite, since

J_  L I = pa y (I\u_ 1 y (IV
<r \ 1 — <r2/k2 h\k) <7 h\k<r)'

21
-). (8.5)

Combining the terms — Rcr) and §((&— ifla)<T+l/ff(b+ijid)) with the
expansion (8.5), one simplifies the right-hand member of (8.4a):

 ——— 1"(a+MM^)Xlfam<rm-\-am—\ + i(pa — fib) m(bmam — hm —^
2P(a+b)L o V W o \ W-

^}) ?(t)

M(^ Sj(am+mbm)<Tm+(dm — rnl)m)+ (8.4b)

Let Qn denote the coefficient of cr" in (8.4b). This coefficient is evaluated by
means of relations similar to (7.9). It is found that Qn vanishes for n>n\.

Recalling that Aq = 0, Ai = Ah and B0 = B0, one concludes from the rela-
tions between the coefficients of a" in (8.4a) and (8.3):

Qo 1 1 1 + P -
A i = > B o = —b0 Qo, where P - RR. (8.6)

(1 - P)(s + 1) 2 4 1 -P

The system of equations between the coefficients of <rn, n> 1,

^■4n+i + s.RJRn+1.4n+i + B„ + RnBn = bn — sRAn_i — sRn~lAn~i,

(8.7)
s(n + lMn+i — sRRn+1An+i + nBn = Qn — sR(n — l)4„_i — ^n_1^4n_i,

and of the conjugate equations has a non-vanishing determinant:

ssDn+1(P) = ss{i-(n+iyPn+2n(n+2)P"+l-(n+iyP»+2+P'2n+2}, n> 1,

because P< 1. The system, therefore, possesses a unique solution given by
the expressions:

1 r  An+1 =   [<3„(1 - (n + 1)P» + nP"+0 - QnR»(n - {n + 1)P + P"+1)
sDn+1

- nbn{ 1 - P"+1) + n(n + 1)W?"(1 - P) + sRDn{P)An._x

+ sR^EniP)!^, (8.8)
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Bn = [Q,{ 1 - (» + 2)Pn+1 + (« + l)Pn+2}
Dn+l

- QnR"{(n +!)-(« + 2)P + P»+2} - (n + 1)6,(1 - P"+2)

+ 5„P"{(ft + l)2 - »(» + 2)P - P"+2}

+ sPG„+i(PM„_i + sR'^E^PU^}, (8 .9)

where the following abreviations are used:

En(P) = {(ft- 1) - 2ftP+ («+1)P2+ (»+ 1)PB- 2»PB+H- (ft- 1)P"+2},

Gn+i(P) = { 2-ft(ft+l)i5"-1+(«- l)(ft+2)P»+(ft- 1)(»+2)P"+1

-ft(«+l)P"+2+2P2"+1}.

One can calculate any number of coefficients in the expansions of $(f) and
\p(£) from those already known, A0 and Alt and the recurrence formulae (8.8)
and (8.9). If (8.8) is rewritten for n>ni in the form

A n+l 1 (  S   ^4n_x)
  — n XDn(P) + — Rn+1En(P) \ , (8.10)
An—1 Dn+l{P) I S An-l)

One sees that lim„_>00|^4n+1/^4B_1| = |i?|. Consequently, </>(f) and \p({) con-
verge and represent analytic functions in the ring |i?|3/2<|f| <|i?|-1/2,
which extends beyond the ring corresponding to the interior of the ellipse C0.
The expansions are finite if A„-i and An vanish for any w>»i. In the case of
the linear load one finds ^46=^46 = 0, Bbp^0, so that the solution is a poly-
nomial of fifth degree. Specific examples indicate that the solution is a poly-
nomial when the loading function q(x, y) is a polynomial.

9. Conclusion. The discussion in the case of distinct roots is similar to
that of Section 8. For details and results the reader is referred to the author's
doctoral thesis.17

When the solution reduces to the, results for an isotropic
clamped elliptic plate bent by uniformly varying load.18 Another impor-
tant special case is that of an orthotropic elliptic plate bent by a linear load,
for which the solution is new. There are two possibilities obtained by setting
either hi =i@i, Vi or Mi = «i+^8i, Hz = — ott+ifii. The calculations in these
and other specific cases are comparatively simple. It is clear that by specify-
ing the values of some or all of the parameters characterizing the material

17 On the deflection of anisotropic thin plates, University of Wisconsin, 1942.
18 See A. E. H. Love, Treatise on the Mathematical Theory of Elasticity, Cambridge, 1927,

p. 486.
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of the plate, its shape, and the type of loading, a considerable simplification
is achieved.

The foregoing method can be extended to the cases of (a) different bound-
ary conditions, (b) different shapes of plates. Many of the devices and formu-
lae, such as those of Sections 4, 6, and 7, remain valid. The extension to the
interesting case of infinite doubly-connected regions involves little more than
the additional feature of determining the character of the multiple-valued
functions fk(zk) from the fact that the deflection w remains single-valued and
continuous.


