
168

ON A CLASS OF DIFFERENTIAL EQUATIONS IN
MECHANICS OF CONTINUA*

BY

LIPMAN BERS and ABE GELBART
Brown University

1. Introduction. This paper is concerned with partial differential equa-
tions of the form

Ux = Ti(y)vy, ^

uy = — r2(y)vx,

and with the second order equations

Mxj /

Tl \T2/„ (1-2)

TflxX "I" (.TlVy)y 0,

which are obtained from (1.1) by eliminating either v or u. Here u = u(x, y),
v=v(x, y), and subscripts x, y denote partial derivatives. Equations of this
form are frequently found in problems of mechanics of continua (cf. the ex-
amples in sections 5-7).

The system (1.1) possesses the same structure as the Cauchy-Riemann
equations

Ux = Vy
(1.3)

Uy ~~ V x

connecting the real and the imaginary parts of an analytic function of x-\-iy.
This similarity suggests an integration theory similar in pattern to that of
the complex function theory. The fundamentals of such theory are presented
in this paper. (A more elaborate mathematical treatment, containing all
proofs, will be published elsewhere). The theory will be illustrated by some
physical examples. In treating these examples our aim is not to obtain new
results in mechanics but rather to present known facts from a simpler and
more unified point of view.

In what follows we suppose that the coefficients n (i = 1, 2) are positive
analytic functions of the real variable y. Then the equations (1.2) are of

* Received Feb. 16, 1943. This paper was written while the authors participated in the
Program of Advanced Instruction and Research in Mechanics at Brown University, Summer
1942; it was presented to the American Mathematical Society on October 31, 1942 under the
title, On solutions of the differential equations of gasdynamics. The authors are indebted to Pro-
fessor W. Prager for his suggestions, criticism and constant encouragement.



DIFFERENTIAL EQUATIONS IN MECHANICS OF CONTINUA 169

elliptic type with analytic coefficients. Therefore u and v will be analytic
functions of the real variables x and y.

2. 2-monogenic functions. If u and v are two conjugate harmonic func-
tions, (i.e. solutions of (1.3)), then f = u-\-iv is an analytic function of the com-
plex variable z=x-\-iy. From u and v we can obtain two other pairs of con-
jugate harmonic functions, U, V and u', v', by setting

U+iV = f fdz, u' + iv' = f'(z) =
J ZA

d]' )
«„ dz

i.e.

U = | udx — vdy, V = I vdx + udy
^0 J *0

and

U' = UX — Vy, v' = VX = — Uy.

This procedure can be extended to equations (1.1). Let u and nbea pair
of solutions of (1.1). We define the functions

/" rz uudx — nvdy, V = I vdx-1 dy (2.1)
z0 J z0 Tl

Uy
U U x — 7" 1 Dyy V ~~ 1) x ~~ * (2.2)

T2

In (2.1) the integration is extended from an arbitrary fixed point Xa+iyo = Zo
to a variable point x-\-iy — z. By virtue of (1.1) these line integrals do not de-
pend upon the path, but only upon the points z, z0.

We have

u
U X   U, Uy   T %V , V X == Vf V y ' J

T1
and

\ \ x M Xy \
Ux TjVxyi My l^xyy Vx 1 Vy V xy

T 2

Thus U, V and u, v are solutions of (1.1).
It is convenient to consider

f = u iv
as a, function of the complex variable z=x+iy. If u and v satisfy (1.1) we
shall call / a 2-monogenic function, 2 denoting the matrix of the coefficients
of (1.1); i.e.,

2 =
i Ti(y)

l Ti(y)
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We have shown that

F = U+iV and f = us + ivs (2.3)

are also S-monogenic functions. We call them the ^-integral and the S-deriva-
tive of / respectively, and write

c dzfF= fd2z, P = -~- (2.4)
J 20 <2sZ

The definition of higher S-derivatives is obvious. We write

/[«] = /, fW = f\ fin = etc.
A comparison of the formulae (2.1)-(2.4) shows that S-integration and

S-differentiation are inverse processes.
By applying S-integration to constants we can obtain an unlimited num-

ber of particular solutions of (1.1). The function /= 1 is S-monogenic, for
u = 1, v = 0 is a solution of (1.1). Therefore

Cz rv dy
Z(I)(z) = I \d-zz = x + i I —

J 0 J 0 Tl

dy

o ^ 0 Tl

is S-monogenic, i.e., u=x, v— J^dy/ri is a solution of (l.i). Next,

/r" r dy r" dyZ^dsz = x2 - 2 Tidy — + 2ix I —
0 Jo J T1 J 0 T\

is S-monogenic and so are

Z<3>(z) = 3 f Zmdsz, Z(4)(z) = 4 f Z<3>dsz, ■ ■ ■ .
J 0 J 0

It is not difficult to find a general formula for Z(n)(z).1 We set Z(0) = l and
define

/'». dy ry— , F(2'(y) = 2 I TtYW{y)dy,
0 T\ J 0

(2.5)
C 1F«(>) =3 — Ym(y)dy,

Jo Tl

Then
Z(B>(z) = £ ( ^)x"in-'Y(n-^(y). (2.6)

.. n ^ '

1 Note that the superscript (n) does not denote differentiation. For the gas-dynamical
equations written in the form (1.1), where n = 1, particular solutions corresponding to the formal
powers Z(n) have been obtained independently of us by Professor S. Bergman (see footnote 14),
and for the imaginary parts by Dr. A. Vaszonyi.
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By repeated 2-integration of the function f = i, we obtain another set of
2-monogenic functions, which we denote by

We have

where

•Z<»>(z) = *£ (nv)x'i—Y*^-'\y), (2.7)
.. A * '

F*(0)(y) = 1, Y*(1\y) = f r2dy, Y*m = 2 f " — Y*wdy, ■ ■ ■ . (2.8)
0 J 0 T1

Finally, for any complex constant a =a+t/3 we set

aZ<">(z) = aZ<">(s) +p{i-Z^(z)}. (2.9)

Clearly

— = n a-Z^-v. (2.10)
d?z

From the "formal powers" (2.9) we can construct new particular solu-
tions. Obviously a "formal polynomial" of the rath degree

/(z) = a0 + «i-Z(1)(z) + • ■ ■ + a„-Z(n)(z), an ^ 0,

is a 2-monogenic function; i.e., its real and imaginary parts satisfy (1.1).
It can be shown that there always exists a formal polynomial of the rath de-
gree which takes prescribed values Ai, A2, • • • , An+1 at ra-f-1 prescribed
points Zi, , Zn+i»

A "formal power series"

/(z) = f; o,-Zt»'(«) (2.11)
n=0

represents a 2-monogenic function provided the series converges uniformly
and absolutely for sufficiently small values of | z|. It can be shown that any
function which is 2-monogenic around the origin can be represented in the form
(2.11). The coefficients are given by a "Taylor formula":

n\an = /["](()). (2.12)

If in defining the formal powers we would extend the integration not from
0 to z but from another fixed point z0, we would obtain another set of particu-
lar solutions, which we denote by

a-Z(n)(z).
'0
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Any 2-monogenic function defined in the neighborhood of Zo, can be repre-
sented in the form

/(«) = Z«»Z(B)(2). (2.13)
n=0 *°

The same method can be applied to the more general equations

<ri(x)ux = Ti(y)vy, ^ ^

cr2(x)uy = — Tt(y)vx

(<7t >0, r,->0, i = 1, 2). We denote the matrix of the coefficients of (2.14) by 2,

2 =
f l r i

<72 T 2

and call a function f = u-\-iv 2-monogenic if u and v satisfy (2.14). The
2-integral, F = U-\-iV, and the 2-derivative, fK = ux+ivK, of / are defined by

/' z f 2 v u(r-iudx — Tivdy, V = I — dx -\ dy,
Zn J Zn & 1 T1

and

VX Uy
u - c\Ux = rivyi v = — =  

<r2 t 2

U, V and u\ satisfy not (2.14) but the associated equations

ux

<Ti{x)

Uy

<Tl(x)

Thus F and/v are 2'-monogenic, where

1

= Ti(y)vu

- — Ti(y)vx

(2.15)

2' =

  T1

(72

1
  T 2
<71

However, 2" =2, so that the 2'-integral of F and the 2'-derivative of
are 2-monogenic.

It is clear in which way we must change the definition of the formal pow-
ers. We set
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Z<!> = J 1 dS'Z, Z<2> = 2 JZwdz'Z where Z*1' = J ld2z,

Z<3> = 3 JZmdz>z where Z<2> = 2 JZd'^z,

and similarly for i Z(n).
Remark. If in (1.1) t\ and r2 are of opposite sign, the equations (1.2) are

of hyperbolic type. The definition of S-monogenic functions, S-integrals and
derivatives, formal powers and formal power series remains the same. How-
ever, it is not true that u and v are necessarily analytic functions of x and y.
Neither is it true that all S-monogenic functions can be represented in the
form (2.13).

The integrals defining Z(n) and i ■ Z(n) must not necessarily converge when
ti or T2 vanishes at Zo or at z. If they do converge, they represent S-monogenic
functions. In this way it is possible to obtain particular solutions of partial
differential equations which are of elliptic type in one part of the plane and
of hyperbolic in another.

3. Correspondence between S-monogenic and analytic functions. Let
oo

V>(Z) = (3.1)
»=0

be an analytic function of z. We define the S-monogenic function

oo

/(z) = 2>„Z(»>(z) (3.2)
n — 0

and say that / corresponds to <p at the origin.2
It can be shown that series (3.2) converges in some neighborhood of the

origin. If (3.1) converges everywhere, so does (3.2). If (at the origin) the
S-monogenic functions / and g correspond to <p and i/', then f+g corresponds
to (p+\p, /[n] to <p(n>, and af to a<p, a being a real constant.

The concept of corresponding functions may be of use in discussing physi-
cal problems. Assume that some physical phenomenon is described by equa-
tions of the form (1.1). Often a simplifying assumption (for instance: the
assumption of incompressibility) leads to Cauchy-Riemann equations. Sup-
pose we possess an interesting or typical solution of the simplified problem.
It will be given by an analytic function f = tp{z). We may expect that the solu-
tion of the original more complicated problem given by

f = f(z), / corresponding to <p,

will be of the same general character.

' Thus the formal powers "correspond" to ordinary powers.
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We define the 2-monogenic exponential and trigonometric functions (de-
pending upon a real parameter a)

E(a, z), S(a,z), C(a, z), i-E(a,z), i-S(a, z), i-C(a, z) (3.3)

as the functions which (at the origin) correspond to the analytic functions

e"sin az, cos az, iei sin az, i cos az.

We have, for instance,

» an co /_ ]\naZn+l

E(a, z) = £ — Z<»>(z), i-S(a, z) = £   i Z»»«)(2). ■
n=o n\ (2w + 1)!

The function C(a, z)-\-i-S(a, z) corresponds to eiaE(a, z)-\-E(—a, z),
E(a, z) — E(—a, z) correspond to 2 cosh az and 2 sinh az.

It is worthwhile to divide the functions (3.3) into their real and imaginary
parts. A simple calculation shows that

E(a, z) = eax\c(a, y) + i s(a, y)]

5(a, z) = sin ax ch(a, y) + i cos ax sh(a, y) (3.4)

C(a, z) = cos ax ch(a, y) — i sin ax sh(a, y)

where
°0 (  jNn^n+l 00 Q!2n+1

*(«. y) = E y(2"+1)(y), sh(a, y) = E —-——777 F(2n+1)(y)
»=o (2w + 1)! «=o (2w + 1)!

(3.5)
" (- 1 )na2" " a2"

c(c, y) = E V(2n)(y), ct(a, y) = E 77-T7 F»»>(y).
»=o (2n + 1)! «=o (2n)!

Note that the series (3.5) converge for all real values of y and for all complex
values of a, so that we may write

sh(a, y) = — i s(ia, y), ch(a, y) = c(ia, y). (3.6)

Similarly we have

i-E(a, z) = eax[— s*(a, y) + ic*(a, y)\

i-S(a, z) = — cos ax sh*(a, y) + i sin ax ch*(a, y) (3.7)

i-C(a, z) = sin axsh*(a, y) + i cos ax ch*(a, y),

where the functions s*, c*, sh* and ch* are defined in the same way as in (3.5),
F(n) being replaced by F*(n\

The right hand sides of (3.4) and (3.7) have the form <J>x(x)15ri(y)
+i$2(a;)'5r2(y). Thus we see that the real and the imaginary parts of the
2-monogenic exponential and trigonometric functions coincide with the func-
tions which we would obtain by solving equations (1.2) by the method of
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the separation of variables. Therefore the functions (3.3) can be used in solving
certain boundary value problems.

The functions E, • • ■ , i - C possess many properties analogous to those of
ordinary exponential and trigonometric functions. For instance, the 2-differ-
ential equations

E" = aE, Sy = aC, C = - aS. (3.8)

hold.
In the same way we could define correspondence at an arbitrary point z0

and discuss the functions E(a, z), S(a, z), • ■ ■ , which at s0 correspond to the
*0 Zo

analytic functions ea(z~*o), sin a(z— zo), ■ ■ ■ ■
In some special cases the formal powers and the functions E, S, C, can be

expressed in a closed form by means of known functions. Such a case will be
discussed in the next section.

4. The case Ti = ti = y~v. In this section we shall consider the special case

2 = (4.1)
1 y-r

1 y-p

For the sake of simplicity we assume that

P ^ 0,
and set

p = 2q+\. (4.2)

Along the real axis ti =t2 vanishes (except in the trivial case p = 0). How-
ever the integrals defining F(n) exist, and therefore so do the functions Z(n),
E, C, S. The integrals defining F*(n) converge only if £<1. In this case only
can we define the functions i-ZM, i -E, i - C, and i-S.

From (2.5) we obtain by a simple calculation

1-3-5 • ■ • (2v + 1)
JA(2H-lV,y\ _  1    /yP+2p+l

(p + \){p + 3) •••(/> + 2v + 1)
1-3-5 • • • (2c - 1)

YW(y) =     y*>,
(P +!)(/> + 3) ■■■{p + 2v- 1)

(4.3)

so that, by (4.3) and (2.6),

( ["/2] (— 1)' / -y\2

t<«—1)/2] (_ J)

- i) !r
Simpler expressions for Z(n) will be found later.

-l)/2] (—1)" /■v\2"+1'»+ iy Z  
^0 v\{n- 2v- l)!r(j + V+ 1) V 2 / j
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Next we determine the 2-monogenic exponential and trigonometric func-
tions. For the function s defined by (3.5) we get

- (- 1)"1 ■ 3 • • • (2? + 1)
s(a, y) = Y\          a^+iyP+2„+i

Zi {2v + 1) \{p + 1) • • • (P + 2V+ 1)
" (- 1)T(2 + 1)

= V  - 1 _ 1  a2*+lyP+!ly+l
fo 2'v[T(q + v + 2)2■+»

" (- 1)T(j)
= ir(? + 1 )ay"+1Yl (ay)2"-

v=o 22vv\Y(q + V + 2)

Recalling the definition of a Bessel function3 we see that

s(a, y) = 2qT(q + \)cTqyq+1Jq+i(ay). (4.4)

Similarly we prove that

c(a, y) = 2"Y(q + 1 )orqy~qJq{ay). (4.5)

For p = 0 (i.e. q= — §) these formulae transform themselves into the familiar
expressions for 11/2 and /_ 1/2. For in this case c(a, y) =cos ay, s(a, y) =sin ay.

By (3.4), (3.6), (4.4) and (4.5) we have

E{a, z) = 2"Y(q + l)orqeax{ y~"Jq(ay) + iyq+1Jq+i(ay) }, (4.6)

S(a, z) = 2 "Y(q + l)(ia)~q{y~" sin axJq(iay) + yq+l cos axj q+i{iay) }, (4.7)

C{a, z) = 2qY(q + l)(ia)~q{y~q cos axJ q{iay) — yq+1 sin axJq+i(iay)}. (4.8)

In the case when

p > 1
the correspondence (at the origin) between analytic and 2-monogenic func-
tions can be expressed by an integral formula. Since only the Z<-n)'s are de-
fined we may consider only such analytic functions which are real on the real
axis.

For our case the equations (1.2) have the form

yAu + puy = 0, (4.9)
yAv — pvy = 0. (4.10)

It is known that the solution of (4.9) which coincides with the analytic func-
tion <p(z) on the real axis is given by the generalized Laplace integral4

3 See for instance, E. T. Whittaker and G. N. Watson, A course of modern analysis, 3d ed.,
Cambridge Univ. Press, 1920, p. 359.

4 See H. Bateman, Partial differential equations of mathematical physics, Cambridge Uni-
versity Press, 1932, p. 408.
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1 r*
ll = — I -f- iy cos a) sin"-1** da.

t J o

A simple argument shows that a solution of (4.10), connected with u by (1.1),
and vanishing on the real axis is given by

1 CT
v = — iyp'— I ip(# + iy cos a) sinp_1a: cos a da.

x J o

Thus the S-monogenic function corresponding (at the origin) to <p(z), is given
by

1 r *
f(z) = — I <p(x + iy cos a)(l + yv cos a) sin"-1® da. (4.11)

T J o

In particular we have

1 rT
Z(n)(z) = — I (x -f- iy cos a)"(l + yv cos a) sinp_1a da. (4.12)

TT J 0

The integral (4.11) represents a 2-monogenic function even when <p pos-
sesses a pole at z = 0. We define

1 rT
Z(~n)(z) = — I (x + iy cos a)-"(1 + yp cos a) sinp_1a da. (4.13)

T J o

It is easily seen that

di
 Z(~n)(z) = — nZ<-~n~l){z).
dsz

We now assume that p is an odd integer. In this case the formal powers
can be expressed by Legendre polynomials.

Introducing polar coordinates r, <p,

x = r cos <p, y = r sin <p

and recalling that the associated Legendre functions P™ admit the representa-
tions6

" \ 1 2"T(w+i) r(»+w+i) rr , „_m 2m
ry Pn{cos <p) =—   I (z+t-y cos a) sin a da

t r(2w+l) r(»-»+l) Jo
we obtain from (4.12)

T) v(n>/- 1 F(/>)r(« + 1) n . q qReZ (z) = : r sin <p Pn+Jcos <p). (4.14)
2<T(q + l)r(/> + n)

6 Bateman, 1. c., p. 407.
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Note that this formula is valid for an arbitrary £>1, if P™, where m is not
an integer, is defined by Hobson's formula.6

If, as we assumed, q is an integer, we have by definition that

P*+9(cos <p) = sinV Pn+q(cos <p)

where parenthesis on the superscript indicates differentiation. Then, by (4.13),

„ (p — 1)!m! „ <9)
Re Z W = 77777^—;—77 r F»+<(cos <p)-

2Qq\(2q + n)\

By (2.2)

so that by (2.6)

y" d
ImZ'»' =   Re Z<n+1),

n + 1 dy

T (P 1)!»! pn-1, (9+1) , \)
ImZ = ———-—— y r {cos ip P„+9+ i(cos <p) - (1 + w)P„+g+1(cos <p)}

2"q\(p + n)!

and

M (p — 1)!»! n( (9)
Z w = T~~77—;—77 r I (p + »)Pn+9(cos v»)

2"q\{p + n)\

+ iy" sin <p[cos pP^+ifcos <p) — (« + 1)pI+9+i(cos ^)]}.

An analogous formula can be obtained for Z(~n).
If 2 has the form (4.1), particular solutions can be obtained also in an-

other way. Introducing the polar coordinates r, ip as new independent vari-
ables, we obtain from (1.1) the system

I rp+1ur = sin-V nv

\rp~lUt> = — sin-pip vr.

Denoting r-\-i<p by f and setting

rp+1 sin-p^)
2,1;  

sin-,V (4.15)

we see that a 2-monogenic function of z is a 2*-monogenic function of f and
vice versa.

Constructing 2*-monogenic formal powers, Z*"'(f), we obtain particular
2-monogenic functions of z.

For instance, if p = 0 (Cauchy-Riemann equations), we have

6 Whittaker and Watson, loc. cit., p. 325.
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—
r 1

1— 1
r

and

Z* = log z, i Z* = i log z. (4.16)

Of course, this method works not only in the case (4.1) but also when
ti and 7*2 are of the form xkyl(x2-\-y2)m.

5. Potential flow of an incompressible fluid with rotational symmetry. In
this and the following sections we shall briefly consider some mechanical ex-
amples leading to equations of the form (1.1).

Perhaps the simplest example is that of a rotationally symmetric potential
flow of an incompressible perfect fluid.7 We introduce cylindrical co-ordinates
p, 0, z, p = 0 being the axis of symmetry. Let qi, q2, q3 be the components of
the velocity vector q in the direction of increasing p, d, z. Then $2 = 0 and
dqi/dd = 0, dq3/dd = 0. Using the well known formulae for div q and curl q we
may write the continuity equation in the form

Id dq3
div q = — (pqi) + — = 0.

p op dz

The condition of irrotationality takes the form

dq i dq3
curl q | -

dz dp
= 0.

These equations imply the existence of a function u (velocity potential) and
of a function v (Stokes' stream function) such that

<?i = Up, q3 = u2, ^

pq i = — v„ pq3 - v

u+iv may be called the complex potential of the flow. We have, by (5.1)

1
uz = — v„

" l (5.2)
u„ = vt.

P

In order to use our previous notations we shall write x, y instead of z, p.
Then we see that the complex potential u-\-iv is a 2-monogenic function of
x-\-iy — z, where

7 See, for instance, M. M. Munk, Fluid mechanics, Part II, in W. F. Durand, Aerodynamic
theory. Springer, 1934, vol. 1, pp. 260-263.
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1 ;y-1
2 =

1 y 1

Since 2 is of the form (4.1) we may use the results of section 4. For the
formal powers we obtain [cf. (4.2) and (4.14)], when 2 = 0, x = r cos <p,
y = r sin ip,

Tn

£(») =   {(M _|_ l)pn(Cos <p) + iy sin <p[cos <p P„'+i(cos <p)
n + 1

— (n + l)P„+i(cos <p)]}.

Using a well known identity this may be written as

Z(n) = rnPn(cos <p) H rn_1;y2P'„(cos <p). (5.3)
n + 1

The real and the imaginary parts of the right hand side of (5.3) are the
known polynomial solutions of the second order equations for u and v:

yAu + uy = 0,
(5.4)y Av — vy =0.

Now we introduce in the x, y-plane polar co-ordinates r, <p (this amounts
to introducing spherical co-ordinates in the physical space). Then u-\-iv will
be a 2*-monogenic function of f = where [cf. (4.15)]

2* —
r2 sin~V

1 sin-V

Forming the first 2*-monogenic formal powers we get

(i) 1 / 1 . \Z* =1 f- i(l — cos <p) = — I hi cos ip ) + const. (5.5)
1 r \ r /

and

i-zl = — log tan + ir. (5.6)
»t/ 2

In the case of a two-dimensional flow (Cauchy-Riemann equations) Z*] was
the complex potential of a source and i■ Z*1' that of a vortex [cf. (4.16)].
Similarly, in our case, (5.5) is recognized as the complex potential of a sink.
(5.6) is the potential of a flow for which the streamlines are circles around the
origin. The line y = 0 is a singular line; it is covered by continuously distrib-
uted sources and sinks.

Other particular solutions can be obtained by forming higher 2*-mono-
genic powers and by iterated 2-integration of (5.5) and (5.6).
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2-differentiating (5.5) we obtain (exactly as in the case of a plane flow)
the complex potential of a doublet. In fact this 2-derivative equals

cos <p _ sinV

Repeated 2-differentiation leads to doublets of higher order. It is easily seen
that the 2-monogenic functions obtained in this way coincide with the formal
negative power defined in section 4. In our case, (p = 1), these powers have
the form

Z(-") = r-n-1Pn.(cos <p) — iy?r~n~2Pn (cos <p).

2-differentiation of does not lead to new particular solutions, since the
2-derivative of (5.6) coincides with (5.5) (but for an additive constant).

Finally we note the form of the 2-monogenic exponential and trigonomet-
ric functions. From (4.2) and (4.6)-(4.8) we obtain, setting p = 1,

E(a, z) = eax{ Jaiay) -f- iyJi(ay) }

S(a, z) = sin axJo(iay) -f- y cos axj\(iay) (5.7)

C(a, z) = cos axJo(iay) — y sin axJi(iay).

6. Torsion of elastic bodies of revolution.8 We consider an elastic body
of revolution and introduce cylindrical coordinates p, 0, z, p = 0 being the axis
of symmetry. The physical components of the stress tensor (in the above
coordinates) shall be denoted by cr,-*, those of the displacement vector by Ui,
i, k — 1, 2, 3. Because of the symmetry these quantities do not depend upon 6.
Furthermore, we assume that

Mi = u3 = 0. (6.1)

Then all o\-fc vanish except (Tu and 023. The condition of equilibrium takes the
form

dan da 23 2au . .—  1 1 =0 (6.2)
dp dz p

whereas the stress-strain connection is given by

a 12
d / u2\ dui

= G — (—I, <r23 = G   (6.3)
dp \ p / dz

8 See A. E. H. Love, A treatise on the mathematical theory of elasticity, 4th ed., Cambridge
University Press, 1934, pp. 330-332, and A. Timpe, Die Torsion von Umdrehungskorpern,
Math. Annalen 71, 480-509 (1912).
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Substituting from (6.3) into (6.2) we obtain

32w3 d2«2 1 dui u + + - = 0. (6.4)
dp2 dz2 p p P2

If the function \p is defined by

tp = pu,

(6.4) may be written as

1
4>pp + izz <Ap = 0

p

This equation implies the existence of a function connected with \p by the
equations

1

P (6-5)
1

<PP = it-
P

<p and \p can be interpreted as the velocity potential and Stokes' stream func-
tion of a rotationally symmetric potential flow [cf. (5.2)]. The particular
solutions of (6.5) have been discussed in the preceeding section.

Let our body be a cylinder subjected to a deformation of the kind con-
sidered above. If the displacements on the boundary are given, the displace-
ments in the interior can be found by integrating (6.4) under the boundary
condition:

i = x(z), for p = ± po,

po being a constant and x a given function. Plainly, this boundary value
problem can be solved by representing x by a Fourier series (or by a Fourier
integral) and by using the particular solutions (5.7). Similarly the solutions
(5.7) can be used if the boundary values are prescribed on the lines z = const.
In this case developments in series of Bessel functions should be used. The
discussion of convergence will be found in the quoted paper of A. Timpe.

Equation (6.2) can also be written in the form

d d— (pV 12) H (pV23) = 0.
dp dz

This equation can be satisfied by introducing a stress function v and setting

dv dv
■—1 p2a 23 = — (6.6)
dz dp
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On the other hand, writing

GU2
u = ,

p
we obtain from (6.3)

du du
C12 — p — > o"23 = p—(6.7)

dp dz

Comparing (6.6) and (6.7) we get

1
uz = —v,

P3
p

1
tip ~ Vz>

P3

(6.8)

The torsion problem consists of integrating equations (6.8) under the boundary
i ondition

v = const, on the boundary.

This condition expresses the fact that the surface of revolution is free of
stresses.

In order to maintain our previous notations we shall write x, y instead
of z, p. Then (6.8) shows that u-\-iv is a 2-monogenic function of x-\-iy = z,
where

1 y~
1 y-

S =

The second order equations for u and v take the form

yAu + 3uy = 0, (6.9)
yAv — 3vy = 0. (6.10)

Again S has the particular form discussed in section 4. From (4.2) and
(4.14) we obtain, setting p — i,

n\ , ,
7(n)(z) = 7 —77 rn[{n-\- 3)P„+1(cos <p)

[n + 3)!

+ iy3 sin ^>[cos^ P"+2(cos <p) — {n + l)Pl+2(cos ^>) ]}

{r, <p are polar coordinates). This is easily transformed into

Z(n) = -——— —— {r"Pl+1(cos <p) + irn+i sinV ^n+i(cos <p) }, (6.11)
(n + 1)(» + 2)

n = 1, 2, • • • .
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The imaginary parts of (6.11) are the known polynomial solutions of (6.10).9
Next we form the 2-monogenic exponential and trigonometric functions.

From (4.6)-(4.8) we obtain

E(a, z) = — eax{—Ji{ay) + iy2Ji{ay)\
a I. y )

2 c i . )S(a, z) = —— sin axJi(iay) + y2 cos axji{iay) >
a (. y )

2(1 . # )
C(at, z) = —-J— cos axJi(iay) — y2 sin axJi(iay) > .

a ly )

The imaginary part of E again coincides with a well known particular solution
of (6.10).10

If we introduce the polar coordinates as new independent variables, u-\-iv
becomes a 2*-monogenic function of f = r+^V> where

2* =
sin-3 <p

sin-3 <p

Forming the first 2#-monogenic formal powers we obtain

= 1 f iff — | cos <p (sinV + 2)] (6.12)
3 r3

(i) cos <p r3
i-Zif = i log tan \<p + i—. (6.13)
,>/2 2 sin2 <p 3

(6.12) describes the torsion of a cone with the vertex at the origin. (6.13)
represents the torsion of a sphere around the origin, the torque being trans-
mitted through a singular line along a diameter.

2-differentiating (6.12) we get

ds (i) cos u> sinV— ZV = —— - i—-■ (6.14)
dsz r4 r

The equations (6.8) can also be interpreted hydrodynamically. u—iv can
be understood to be a complex potential [(velocity potential)+i(Stokes'
stream function) ] of a rotationally symmetric potential flow in a five dimen-
sional Euclidean space. (This interpretation is due to Arndt).11 If we adopt
this point of view, Z*' again represents a source, and its 2-derivative, (6.14),

* Love, 1. c., p. 331.
10 Love, 1. c., p. 332.
11 F. C. Arndt, Die Torsion von Wellen mil achsensymmetrischen Bohrungen und, Hohlrau-

men, Thesis, Gottingen, 1916.
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a doublet. Combining "flows" of the form (6.12) and (6.14) Arndt solved the
torsion problem for a number of bodies with holes.

Repeated 2-differentiation of (6.14) leads to doublets of higher order.
These complex potentials are equivalent to the Z(-B)'s defined in section 4.

7. Two dimensional potential gas flow. Let p and p represent the pressure
and density of a perfect compressible fluid.12 If heat conduction is neglected
the above quantities are connected by the relation

P = (po/po)py,

where y is the ratio of the specific heat for constant pressure to the specific
heat for constant volume, the subscript zero referring to the fluid at rest.
Introducing the local velocity of sound, a, given by

dp p o
a2 = — = y — p7_1,

dP Pi

we have by Bernoulli's equation

a = al - [(7 - l)/2 ]q ,

where q is the magnitude of the velocity, and

y - 1 gni/(T_1)
= Po[l

2 ajjj

The continuity equation for a steady flow has the form

div = 0, (7.1)

where q is the velocity vector. If the flow is irrotational,

curl 9 = 0. (7.2)

For a two-dimensional flow, q = (q cos 9, q sin 9, 0), 6 giving the direction of the
flow. (7.1) and (7.2) then imply the existence of two functions, <£(*, y),
^(x, y), such that

q cos 0 = q sin 6 — $y,

and

Po . Po
q cos 6 = — SE'j,, q sin 6 = — ■—

P P

12 See, for instance, G. I. Taylor and J. W. MacColl, The mechanics of compressible fluids,
in W. F. Durand, Aerodynamic theory, Springer, 1935, vol. 3, pp. 229-230.
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Thus the velocity potential $ and the stream function ^ are connected by
the equations

P o

P

P o= 
P

Since p is a non-linear function of the derivatives of the unknown functions
$ and Sir, the above equations are non-linear. However, linear equations can
be obtained by a transformation due to Molenbroek13 and to Chaplygin;14
namely, by introducing as new independent variables the quantities 9 and q.
The equations then become

p o
$8 = — qVg

P

p \ a2/ q

(7.3)
3>9 = ( 1 ] —

To simplify the formulae Chaplygin introduces a new variable

2(7 - 1)
t = —   q\

7 Pj 1

In what follows we write x, y instead of 6, t. (x, y are not, as they were before,
the coordinates in the physical plane). Then (7.3) shows that the complex
potential is a 2-monogenic function of x+iy, with

S =
1

2 y
(1 - y)m

1 — (2 m + l)y
m =

7-1
2y{\ — y)l+m

We see that

t 1 - l/r2 = 0 for y = 0, r2 = 0 for y = \/{2m + 1). (7.4)

13 P. Molenbroek, TJber einige Bewegungen eines Gases mit Annahme eines Geschwindig-
keitspotentials, Arch. d. Mathem. u. Phys. (2). 9, 157 (1890).

14 A. Chaplygin, On gas jets, Scientific Annals of the Moscow University, Section for Math,
and Phys. 21, 1-121 (1904) (Russian). Cf. Th. von Karman, Compressibility effects in aerody-
namics, Journ. Aeronaut. Sc. 8, 337-356 (1941). (This paper also contains an extensive bibli-
ography.) For a detailed description of the Chaplygin transformation in English see
S. Bergman, The Hodograph Method in the Theory of Compressible Fluids (suppl. to K. O.
Friedrichs, R. v. Mises, Fluid Dynamics), mimeographed lecture notes, Brown University, 1942.
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The formal powers a-ZZaM cannot be defined for Im z0 = 0. For

0 < y < 1/(2™ + 1), (7.5)
i.e. for subsonic flow, we have the elliptic case, r,->0, i = 1, 2.

We postpone a systematic discussion of the application of our method to
this case and shall show only how an important set of particular solutions
(due to Chaplygin) can be represented in terms of our functions.

The second order equation for ^ takes the form

1 - (2m + l)y d . .
- {2y(l - y)-m*v} = 0. (7.6)

2y(l — y)1+m dy

Chaplygin gives as particular solutions of (7.6)15

^ = yaFa[y) cos ax,

x = yaFa(y) sin ax,

where a>0 and Fa{y) is the hypergeometric function

F«(y) = F(aa, ba, 2a + 1, y)

the constants aa, ba being determined by the conditions

a« + ba = 2a — m, aaba = ~ ma{2a + 1).

Consider the S-monogenic function

H = >p + i\f>;
we have

= <Px + iipx = 2y(l — y)~miy + iix

= 2y(l — y)~my"^1\aFa{y) + yF„ (y)] cos ax — iay"Fa(y) sin ax.

Therefore

h = H\
satisfies the differential equation

d2h
■ f- a}h = 0,
dx2

i.e. the S-differential equation

k" + a2k = 0. (7.7)
15 Chaplygin, 1. c. Similar solutions have been considered by F. Ringleb, Exakte

Losungen der Differentialgleichungen einer adiabatischen Gasstromung, Zeitschr. angew. Math.
Mech. 20, 185-198 (1940). The method by which Chaplygin solved the jet problem and Ringleb
computed the complex potentials of a compressible doublet is actually identical with the use of
the "correspondence" discussed in section 3.
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Let jo be a fixed real number, satisfying (7.5). Then

h{iyo) = a A, h\iy o) = ia2B (7.8)

where

A = — 2yo(l - yo)myo l[aFa{yo) + yoFJl (>)]
a (7.9)

B = — yoFa(y0).

It is seen easily that the solution of (7.7) with the initial conditions (7.9) is

A C (a, z) + Bi S (a, z).
>vo iy o

This function is therefore identical with h. 2-integrating and suppressing a
non-essential constant we obtain

H = A S {a, z) — Bi-C (a, z)
iyo iyo

so that

\p = Im[/1 S (a, z) — Bi-C (a, z)].
*1/0 'I/O

In a similar way we obtain

X = — Im[^4 C (a, z) + Bi S (a, z)].
• I/O

It is interesting to note that if a is a positive integer, H = <p+i\p and G=u-\-i\
are regular at the origin and that all their S-derivatives vanish at this point.
This is possible because of (7.4).

We also note that the first formal powers

Z<*> and i-Z<»

represent the complex potentials of a compressible source and vortex respec-
tively.16

16 Cf. Ringleb, 1. c.


