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SYMMETRICAL JOUKOWSKY AIRFOILS
IN SHEAR FLOWf

BY

HSUE-SHEN TSIEN
California Institute of Technology

1. Problem. The usual two-dimensional theory of airfoils assumes a uni-
form velocity for points far from the airfoil. There are many applications
where this condition is not satisfied. For example near the ground there is a
large vertical velocity gradient, and therefore a first approximation to the
problem can be obtained by assuming a linear velocity distribution. This has,
in fact, been done by H. v. Sanden1 in connection with 0. Lilienthal's experi-
ments in natural wind. However, v. Sanden used a numerical method of in-
tegrating the differential equation and carried out the calculation only for a
wedge-shaped body. Th. von Karman* suggested to the author to take up
this problem again in order to develop a more complete theory. Hence in the

Fig. 1. Body in a Shear Flow.

t Received Dec. 27, 1942.
1 v. Sanden, H., Uber den Auftrieb im naturlichen Winde, Zeitschrift f. Math. u. Phys.,

61, 225, (1912).
* The author wishes to thank Dr. von Karmin for suggesting the problem and his kind

interest during the course of the work.
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first part of this paper, a generalization of the well-known Blasius theorem
for calculating aerodynamic forces acting on an airfoil is given. Then the
result is applied to the case of symmetrical Joukowsky airfoils and the final
data are given in a number of tables and graphs.

2. Method of solution. By setting up the problem as shown in Fig. 1, the
velocity distribution far from the airfoil is given by

(1)

= 0

where Uo is the undisturbed flow velocity along the x-axis and K is the non-
dimensional velocity gradient of the undisturbed flow, c is some dimension
of the body immersed in the stream, e.g., the chord of the airfoil. Then the
vorticity at locations far from the airfoil can be calculated from Eq. (1) as

dv du
 = - U0K/c (2)
dx dy

which is a constant. However, in the flow of non-viscous incompressible fluid,
the vorticity is associated with the fluid and maintains its strength. Consider
the field of flow starting from the far left, where the vorticity is constant and
equal to — U0K/c. This value of vorticity is carried with the fluid over the
whole field of flow. Therefore, the flow problem on hand is one with constant
vorticity distribution.

To satisfy the equation of continuity,

du dv— + — = 0 (3)
dx dy

the stream function \p is introduced. It is defined by

di
u = — > v —   • (4)

dy dx

u, v are the components of velocity in the x-direction and the y-direction.
Due to constant vorticity distribution, the vorticity equation is

dv du
 = - U0K/c. (5)
dx dy

By using Eq. (4), Eq. (5) can be written as

dU d2t
— + — = UoK/c. (6)
dx2 dy2

Therefore the flow problem is reduced to that of solving Eq. (6).
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The stream function xf/0 of the undisturbed flow given by Eq. (1) is

/ K y2\^=f/o^ + 7 7j (7)

which can be easily verified by means of Eq. (4). The mathematical problem
can be considerably simplified by introducing the stream function \pi due to
the presence of the body defined as

i = io + $i- (8)

By substituting this expression for 4> into Eq. (6), the equation for \pi is simply

aVi—T + = 0. (9)
3x' dy2

This is the Laplace equation. Therefore any solution of the Laplace equation
~ r- r\ X / rt /R

-0.5

--10

Fig. 2. Source in a Shear Flow.

combined with \f/0 will satisfy Eq.' (6). For example, we can combine i/'o with
a source

ii = UoboB (10)
or a vortex

ii = U0a0 log r (11)

as shown in Figs. 2, 3, and 4. Here

= tan-1 — > r = y/x2 + y2. (12)
x
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It is interesting to notice that in the case of a source the zero stream line,
which forms the walls of the "half body" when K =0, is no longer symmetrical
with respect to the flow direction. The velocity, and hence the pressure, along

X
-1.5 -10 -0.5 0 0.5 1.0 15

<f¥~ '

+ y'+lS_(ton'JL-n)
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Fig. 3. Source in a Shear Flow.
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Fig. 4. Vortex in a Shear Flow.
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these two branches are also different. If the flow field within the zero stream
line is replaced by a solid body, such lack of balance may calise the resultant
pressure force to become infinitely large with the infinitely long solid bound-
ary. This surmise will be verified later when the resultant force and moment
are calculated.

If the boundary of the solid body is given, the flow problem indicated in
Fig. 1 subjects \J/i to following conditions:

(i) the disturbance velocity due to \pi must vanish at points far from the
body so that Eq. (1) is satisfied;

(ii) the normal component of the disturbance velocity at the surface of
the body must equal the negative of that due to \po so that the resultant nor-
mal velocity is equal to zero.

3. Shear flow over a circular cylinder. To illustrate this method before
solving the more complicated case of an airfoil, the flow over a circular cyl-
inder will be investigated first. If the center of the circle is located at the
origin, and the radius of the circle is c/2, the undisturbed velocity U due to
\f/o at the surface of the cylinder is

U= [70(l + y sin*) (13)

where 6 is given by Eq. (12). The normal component U, of the velocity TJ is

Ur = U cos 6 = Uo ̂ cos 6 + — sin 26^ . (14)

Therefore, the normal component of the disturbance velocity due to \pi at the
surface of the circular cylinder must be equal to — Z7„ or

/ 1 dM / K \
( ) = — t/o(cos0H sin 26 ) (15)
\r dd Jr.c,2 \ 4 /

where r is given by Eq. (12).
On the other hand, the solution of Eq. (9) that will give vanishing dis-

turbance velocities at points far from the origin is

ipi = U0 Too log r + b0d + 53 ia" cos n0 + sin nd) —1 • (16)
L n=i r"J

The an and bn are undetermined coefficients. By substituting Eq. (16) into
Eq. (15), one has immediately

b i "(7)
/ c\3R" " (7) 7' <17)
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All the other coefficients vanish. Therefore, the resultant stream function is

4* — "Ao + — Uo[(, _ f_) si„»+ sin.»+cos 2»)] . (18)

At the surface of the cylinder, r =c/2, Eq. (18) reduces to

Kc
t=U o— (19)

Fig. 5. Circular Cylinder in a Shear Flow with K — 2.

which is a constant, verifying the boundary condition of the problem. The
stagnation point on the cylinder can be calculated by means of Eq. (18). The
condition is (d^/dr)r_c/2 = 0. This is satisfied at the point where

si"9" jHV1 + T ± ']• (20)
Therefore, if — 8/3 <K<8/3, there will be two stagnation points on the cyl-
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inder located on that half of the surface where the velocity is higher. If K
has a value beyond this range, there will be four stagnation points on the
surface.

Fig. 5 shows the stream lines for the case of K = 2. It is seen that there is
an additional stagnation point in the flow field on the negative y-axis.

4. Force and moment. In this section, the force and the moment acting
on a body whose disturbance stream function \pi is given by Eq. (16) will be
calculated.

The pressure p in the fluid is related to the velocity components u, v and
the density p by Euler's equations

du du dp
pu 1-pv — = — —

dx dy dx
(21)dv dv dp

pu b pv •— =  
dx dy dy

By means of Eqs. (4), (7) and (16), the quantities on the left hand side of
Eq. (21) can be calculated and then p can be obtained by integration. How-
ever in the final calculation of force and moment, the pressure will be in-
tegrated along a contour far away from the body; only terms up to 1/r2 in p
need to be considered. Furthermore, the calculation can be simplified to a
certain extent by differentiating the first of Eq. (21) with respect to x and
the second with respect to y and adding the resultant. Then by using Eqs.
(3) and (5),

1 2 _ 2 pYi dVi / aVA2 U0K dVil
p ^ L dx2 dy2 \dxdyj c dx2 J

By substituting Eq. (16) into Eq. (22), the differential equation for p is then

1 lfl a/34\ 1 d2p~\
_ V2p = —\ ( r—) + — —7p p L r dr \ dr) r2 302J

2!" 1 2 2 -^(1
— 2£/o — — (&o + ^0) \ — (— ^0 cos 26 b0 sin 20)

\_ r4 c (r2

1
+ — (2«i cos 3d + 2bi sin 30)

r3

H (6a2 cos 46 + 6b2 sin 40) + • • • 1 . (23)
r4 ) _

The appropriate solution for this non-homogeneous equation is evidently
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l 2r l 2 2 k 1 \
— p — 2Uo\ (<io "I- b0) -| < ( — do cos 20 -(- bo sin 20)
p L 4r2 c I 4

1
 (2«i cos 30 + 2bi sin 30)

8 r

1
(6a2 cos 40 + 6b2 sin 40)

12 r2 }]

1
+ A + A0 log y B$9 H (^1 cos 0 -J- B\ sin 0)

r
1

H (A 2 cos 20 -]- sin 20) -f* • • • (24)
r 2

where the ^4's and B's are undetermined constants. Either the first or the sec-
ond equation (21) can be used to determine A0, Ah • • • and B0, B1, _B2, • • • .
The final result for the pressure p can be written as

p 2r K K K
— = A + Uo — lo log r H b09 (— a0 cos 20 + b0 sin 20)
p L c c 2c

K
—  (ai cos 30 + b 1 sin 30)

2cr

+ —
r

1 (( 3 Kax \ (3 Kb! \ . )
— < I b0 ) cos 0 + 1 a0 J sin 0 >
r l\ 2 c / \ 2 c / )

M-
^2 cos 20 + 2 ̂  + a^j sin 20 j + • • -J. (25)

2 2
a0 + Jo ■K' ,

H  (a2 cos 40 + 62 sin 40)
r2 (. 2 c

Now by considering the pressure force and momentum of the fluid, the
following relations can be obtained between the forces X, Y acting on the
body and their moment Mo about the origin2 (Fig. 1).

X — — I pdy — I pu(udy — vdx)
J c " c

Y — I pdx — I pv(udy — vdx) (26)
J c J c

Mo = I p(xdx + ydy) — I p{vx — uy)(udy — vdx).
J c J c

2 See for example Glauert, H., Aerofoil and airscrew theory, Cambridge University Press,
London, 1930, p. 80.
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The integrals are taken along any closed curve C enclosing the body. If a
circle with radius R is taken as the contour, then in the integrals of Eq. (26)

x — R cos 0
(27)y = R sin 0.

Therefore, by using Eq. (25),

— j" pdy = — R J" p cos Odd = irpUl [fto   • (28)

Furthermore,

r K . 1udy — vdx = ?7o I — R2 sin 20 + R cos 0 + b0 H (— sin 0 + cos 9)
\_2c R

-j (— 2^2 sin 29 + 2bi cos 29) + • • • "1 dd (29)
R2 J

and

= U0^
K 1
-— R sin 9 + 1 H (a0 sin 9 + b0 cos 9)
c R

H (— Oi sin 29 + bi cos 29) + • • • |. (30)
R2 ]

By combining Eqs. (29) and (30), the second term in the equation for the
horizontal force X can be calculated as

C 2r 3R i
— J pu(udy — vdx) = — xpC/o|^36o  —aij • (31)

Finally the horizontal force is expressed as

X = - 2-rpUlbo. (32)

Similarly, the vertical force Y or lift and the moment Mo about the origin are
obtained in the following forms:

Y = 2tPuI [ao + — (Rbo - Ji)] (33)

Mo — 2irpf/o [,0^0 — ~\ (hR2bo — .2) J • (34)

Eqs. (32), (33) and (34) show that the force and moment on the body can be
calculated in terms of the strength of the vortex, the source, the doublets

K
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and the quadruplets in the disturbance stream function xj/i. These equations
can be regarded as the generalization of the well-known Blasius formulas.
They reduce to the latter formulas if K = 0. However, it should be noticed
that if there is a source, i.e., bo^O, both the lift Y and the moment Ma
grow to infinite magnitude with R—* °o. This confirms the surmise stated pre-
viously. If the boundary of the body is closed, b0 must vanish, and there can
be no horizontal force or drag and the lift and moment will remain finite,
v. Sanden1 obtained a small drag force for his wedge shaped body. Evidently
this is due to the unavoidable inaccuracies in his numerical method.

5. Symmetrical Joukowsky airfoils. For the flow over a symmetrical
Joukowsky airfoil, it is difficult to determine the disturbance stream function
i/'i directly. But, as seen from Eq. (9), \pi satisfies Laplace's equation, and
therefore conformal transformation can be used. It should be noticed, how-
ever, that \po does not satisfy Laplace's equation; and therefore it does not
allow the use of this transformation in the ordinary sense.

(b)
Fig. 6. Joukowsky Transformation of a Circle into an Airfoil.

Consider a circle of radius a in the f plane (Fig. 6a). The transformation

/ 1 2e2 \
= f-( + -— + —-)

\ f — « a + «/ (35)

will transform the circle into a symmetrical Joukowsky airfoil in the z plane
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(Fig. 6b) inclined at an angle a against the x-axis, e is a positive quantity
which increases with the thickness of the airfoil, e is zero for a flat plate and
is infinite for a circle. Furthermore

a = 1 + e. (36)

The origin of the z-plane lies at the center of the airfoil (Fig. 6b). If we repre-
sent the circle in the f-plane by

r = ae« (37)
the trailing edge of the airfoil corresponds to the point where 0=0. The lead-
ing edge of the airfoil corresponds to the point where d=ir. Therefore, the
chord is

*2 \

(38)

With
t/a = X

the values of x and y corresponding to an arbitrary value of 6 are given by
Eq. (35) as

( cos (0 + a) — X cos a 2X2 cos a)
x = a < cos (0 — a) — X cos a H b   V

I a2( 1 - 2X cos 6 + X2) 1 + X )
(39)

C sin (6 + a) — X sin 9 2X2 sin a)
y = a < sin (0 — a) + X sin a > .

I a2(l - 2X cos 0 + X2) 1 + X j

After Eq. (7), the velocity due to \po at a point in the z-plane corresponding to
f = aew is

[Ka I sin (0 + a) — X sin a X sin a 1 "I
1 + sin (0 - a) —   +■-! > (40)

. c I a2(l - 2X cos 0 + X2) a(l + X)jJ

This velocity is horizontal and has a tangential component in the counter-
clockwise direction equal to

- u\ dX 1 (41)
LV(dx)2 + (dyYJ r=oe«

and a normal component, directed along the outward normal, equal to

dy
_\/(dx)2 + (dy)2"l -»'■ -I,-- <42)

On the other hand if \pi is the disturbance stream function, the velocity com-
ponent normal to the circle f =aeie is
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(43)
/J_ dfA
\r dd)r=a'

Therefore, the corresponding velocity component in the z-plane, normal to
the surface of the airfoil, is

r dd / r=a
(44)

Then the boundary condition at the airfoil surface requires that this normal
component of the disturbance velocity be equal to the negative of the normal
velocity component due to o. By means of Eqs. (42) and (44), this boundary
condition is expressed by

(i^ « - _ Pr—a.—1 . (45)
V r 30 /r_„ dz (•_„«« LV(dx)2 + {dyyS{=ajo

(46)

f-
But

r .   add
[V {dx)2 + (dy)2]^aje = ——

dz f_OC"

With the aid of Eqs. (39), (40), and (42), Eq. (45) can be re-written as follows

J_/J_ dh\
U0 \ r dd )r=a

[Ka I sin (0 + a) — X cos a X sin a ) "
1 + < sin (0 - a)     H }

c I a2(l — 2X cos 6 + X2) a(l+X)j_

cos (0 + a) + X cos (0 — a) + 2X cos a~|
• cos (0 — a) —     .
L a2(l - 2X cos 0 + X2)2 J (47)

This equation alone would not determine the function completely but for
the additional so-called Kutta-Joukowsky condition, which fixes the strength
of the circulation over the airfoil.

6. Strength of circulation. The Kutta-Joukowsky condition states that
the velocity at the trailing edge of the airfoil must be finite. The velocity at
the trailing edge of the airfoil consists of two parts: one part is that due to ^0
and the other that due to \pi. Only tangential components need be considered
because the normal components cancel each other as required by the bound-
ary condition. The part due to if/i in the counterclockwise direction is

d\pi
dr

(48)
f-o

Therefore, by means of Eq. (41), the resultant velocity at the trailing edge is
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5 (49)
d\f/1 dx- U
dr \Z(dx)2 + (dy)2 dt;

dz f-o

but f =a is the singular point of Che transformation from f to z as can be
easily verified. In other words, |df/dz| tends to infinity at f —a. Therefore,
the resultant velocity at the trailing edge can only be finite if the quantity
within the square bracket of Eq. (49) vanishes. By means of Eqs. (39), (40),
(46), this condition can be written as

/ d\l/{\ T Ka ( sin (0+a) —X cos a X sin a "l 1
-( —) -Uo 1+ <sin (d-a)  + } I

\ dr /r_a L c I a2(l — 2X cos 0+X2) a(l+X)jj
9-0

sin (0+a)—X2 sin (0 —a) — 2X sin ct~l
• sin(0-a) +          =0.
L a2(l-2X cos 0+X2) Je-o

The appropriate general solution \f/1 in the f-plane is

(50)

Therefore,

= {7o r«o log r + /3O0 + X («n cos ne + Pn sin nd) —1. (51)L r" J

1 3^A /30 " 1
 ) = h L(- nan sin nd + nfin cos nd) >
r dd )r=a a n_i a"+1

-(■
Uo \

1 / d\pi\ a0 JL, 1
 1 J = — 1- V (nan cos nd + nf)n sin nd) —

Uo \ dr /r=a a n=i an~

(52)

By expanding the right hand side of Eq. (47) into a trigonometric series,
all the coefficients «i, 0:2, • • • and /30, ft, • • • in i/'i can be determined by the
first of Eqs. (52). Then the second equation of Eqs. (52) together with Eq. (50)
will determine the value of a0- Actually, calculations are easier if each
term on the right of Eq. (47) is taken separately. For example, the term
— Uo cos {9 — a) can be expanded into — Uo cos a cos 6—Uo sin a sin d. Then
according to Eq. (52), the contribution to is a2 sin a; the contribution to ft
is -d2 cos a. Finally the contribution to — (d^i/dr)r=0 is Z7o(sin a cos 6
— cos a sin 0) = — Uo sin (6 —a). The other more complicated terms can be
treated in a similar manner with the aid of the following expansions and their
derivatives with respect to 8 and X:

sin 8 "
= 2l, ^n_1 sin n0

1 - 2X cos d + X2

cos d — X

1 - 2X cos d + X2

1
1 - 2X cos d + X2

= ^2 Xn_1 cos nd
n=l

= (\ + 2 Y2 Xn cos nd\.
1-X2\ J
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The value of — (d\f/i/dr)r*,a thus found is

_W<¥A __«o_r K\ 1
U0 \ 6r L~ a L c(l+X) J
T sin (0+a)— X2 sin (d — a) — 2\ sin a-]

• sin (d — a) 
L a2(l —2X cos 0+X2) J

Ka f ( sin (0+a) — X cos a )
H J cos 2(0 —a)+< sin (d — a) >

c L l o2(l —2X cos 0+X2)J
sin (0+a)—X2 sin (d—a) — 2X sin a

a2(l —2X cos 0+X2)2

cos (d — a) [cos (0+a) —X cos a J 1

a2(l —2X cos 0+X2) +2a4(l-X2)(l-2X cos 0+X2). (53)

The strength of circulation a0 necessary to satisfy the Kutta-Joukowsky
condition can then be calculated by means of Eq. (50). The result is

«o
f Ka ( 2X sin2 a 1 1 } ~|

= aUo 2 sin a H <-— J + cos 2a 1 > (54)
L c U(1 + X) a 2a(\ + X)j J

The strength of the source, /30, is zero, as would be expected from the fact
that the airfoil is represented by a closed contour.

7. Strengths of doublets and quadruplets. By collecting the contributions
of the different terms of [(1/r) d^i/d0]r_o in Eq. (47) to au a2, /?i and ft, the
following values of the strength of doublets and quadruplets in the f-plane
are obtained

a i = «2tf„[(l+-^)sin«

Ka( X X
H < cos 2a —

/ 1 \ X sin2« ) ~|

\ ^ a2) a(l+X) j Jc (2a2 2a4(l —X2) \ a2/a(l+X)

px = a2Ua [" (- 1+—) cos a+— sin 2a{ —+ (~ 1 +—)   11
L \ a2J c I 2a2 \ a2/ 2a(l+X) f J
fX Ka MIX2 1-3X2 "| "I

a2 = a3J7o —sin a-\ cos 2a< 1 1 >
La2 c (4 2a2 2a2 4a4(l— X2) J _l
rX Ka ( 1 X2 1-3X2 )1

j32 = a3i7o —cos <H sin 2a<    —- > . (55)
La2 c I 4 2a2 4a4(l—X2) j J

However, to calculate the lift and moment over the airfoil, it is not the
strength of doublets and quadruplets in the f-plane that is needed but the
strength of those in the z-plane, where the airfoil is located. From the known
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values of «!,••■ /32 given by Eq. (35) and the transformation specified by
Eq. (55), the desired quantities can be easily calculated in the following man-
ner.

By introducing the conjugate function $i of the stream function one can
write

— /3i —|— iotx — /?2 + ict-l
0i + tyi — iota log f H 1 )-•••• (56)

f f2
With f =rei0, the real part of Eq. (56) is Eq. (51) since j80 is found to be zero.
Now Eq. (35) gives

= ze'a£
X 1 "I

1+7   + • • • (57)
(1 + X)ze*a z2e2,a J

for sufficiently large values of z. Then cfri+ixf/i can be expanded into a series
in z by substituting Eq. (57) into Eq. (56). The result is

4>i+iii= iao log z+ | — fii+i ( 2~lg'/3i+i

r \pi / X«! X2ao \"1
+ — AH N(<*2 olo  ——— ) \z~2e 2,"+ • • • . (58)

L 1+X V 1+X 2(1+X)2/J

If the strength of the circulation, the doublets, and the quadruplets in the
z-plane are denoted by a0, ai, by, a2 and respectively, the following relations
are obtained by comparing Eq. (58) with Eq. (56):

do = <xo, bo — 0

(59)
sin a

( Xa0 \
= sin a + ^ cos a

/ \a0 \ ,
b\ = /3i cos a — ^ai + ^ si

/ X^i \ _ / Xai X2a0 \
= I ^2 1 sin 2a + I ai ao —   ) cos 2a

V 1 + X/ \ l-f"X 2(1 -f- X)2 /
, / Xfr \ / Xai X2a0 \ .
02 = I P2 1 cos 2a — I «2 ao   ) sin 2a.

\ 1 + X/ V 1 + X 2(1+ X)2/

Eqs. (54), (55), and (59) give all the necessary data to calculate the forces
and moment acting on the airfoil.

8. Lift and moment coefficients. By means of Eqs. (32), (33), and (34),
the drag, lift, and moment about the origin can be calculated with the values
of ao, Ci, az, bo, bh b2 given by Eq. (59). It is seen that the drag is also zero in
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the case of shear flow. The result of the computation can be conveniently rep-
resented by defining the functions lo, h, h, h, h and mo, mi, mi, m3,'mi in con-
nection with the lift coefficient Cl and moment coefficient Cat0 in the following
manner:

Y
Cl—~—r~ = 2x[/o sin a-]rK{li-\-lz cos 2a} +X2{Z3 sin a-\-lt sin 3a} J

§pUBc

- Mo_

buy
— j ir Vmo , ,

Cm0=  1— = — — sin 2a -\-K\mi cos a+m2 cos 3a\ (60)rT " 2 L 2

+ K2\m3 sin a+w4 sin 4a} J .

The negative sign in the moment coefficient is introduced in accordance with
the usual convention of taking the stalling moment as positive. The functions

h, h, h, h and m0, mi, m2, m%, mi are given by the following equations:

1 1 X2
lo = — > h = 1-

h d 1 -f~ X
X(X + 2/a) X2(2 + 1 /a)
8A2(1 + X) ' 2 _ 8A2(1 + X)

1X
k = -

h =

64A3a(l + X)

X
a\ 1 + X)

[1 i_lL (1 + m* J

- 2X + X2
(61)

mo

m\

mi

=

64a2h3 L (1 + X)2

J_[~— ——1
ah2 \_a 1 + X J

1 r1 x / . x v=  1 — ( 1 —|— X —| )
8ah3 L a 2(1 + X) \ o(l + X)/.

1 r 1 x / 2 2 + i/o\n
= —(i-|x)+— ( x2 —1

8 ah3 L a 2(1 + X) W 1 + X J J
1 r 1 /1 x2 \ x2 -|
rah* Ll + X\o2 + 2a2(l + X)2/ 2a(l + X)2 J

(i 4   )
V a{ 1 -f- X)/

64 ah*
1

64 ah*
X2(l + X2)

1 + X-  I 1+ , 1 +
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1 ( 1 1 \ 9X2 "1
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Table I gives the numerical values of these functions together with the
thickness ratio 8 of the airfoil. It is seen that with increasing thickness the

Table I

h h h h u mo ttii m i m. mt

0
0.05
0.10
0.15
0.20
0.30
0.40
0.50
0.60
0.80
1.00

0
0.0618
0.1179
0.1687
0.2150
0.2958
0.3636
0.4210
0.4701
0.5489
0.6089
1.0000

1.0000
1.0476
1.0909
1.1304
1.1667
1.2308
1.2857
1.3333
1.3750
1.4444
1.5000
2.0000

0
0.0122
0.0237
0.0345
0.0446
0.0628
0.0787
0.0926
0.1047
0.1248
0.1406
0.2500

0
0.0009
0.0033
0.0069
0.0115
0.0227
0.0356
0.0494
0.0635
0.0911
0.1172
0.5000

0
-0.0006
-0.0009
-0.0010
-0.0009
-0.0003
+0.0005
+0.0014
+0.0023
+0.0039
+0.0051

0

0
0.0007
0.0014
0.0020
0.0025
0.0034
0.0040
0.0045
0.0048
0.0051
0.0051

0

1.0000
1.0430
1.0737
1.0945
1.1073
1.1148
1.1058
1.0864
1.0608
1.0006
0.9375

0

0.1250
0.1334
0.1413
0.1477
0.1530
0.1610
0.1660
0.1687
0.1697
0.1683
0.1641

0

-0.1250
-0.1267
-0.1259
-0.1231
-0.1190
-0.1080
-0.0953
-0.0823
-0.0697
-0.0474
-0.0293

0

-0.0156
-0.0155
-0.0152
-0.0148
-0.0143
-0.0131
-0.0119
-0.0106
-0.0095
-0.0075
-0.0059

0

0.0078
0.0102
0.0128
0.0157
0.0188
0.0250
0.0310
0.0365
0.0416
0.0499
0.0560

0

azl

Fig. 7. Ratio of the distance d from leading edge to aerodynamic center (positive when it
is behind the leading edge) to the chord c as a function of thickness ratio 5 and non-dimensional
velocity gradient K.
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effect of the velocity gradient K becomes larger and larger. For example, if
5 = 11.79% the effect of K on Cl at small angles of attack is approximately
given by the term 27ri<C(/1+/2) = 2-rrKY,0.02695. In other words, it is equiva-
lent to a shift in the angle of zero lift by 1.54 K degrees. For an airfoil of
21.50% thickness, this value is 3.21 K degrees.

Fig. 8. Moment coefficient Cjua 0 about the aerodynamic center (positive for stalling
moment) as a function of thickness ratio and non-dimensional velocity gradient K.

9. Aerodynamic center. To demonstrate the effect of the velocity gradient
on the moment more clearly, the aerodynamic center for small angles of at-
tack will be calculated presently. For small values of a the expressions for Cl
and Cm„ of Eq. (60)-can be simplified to

CL = 2t[{10 + K\l3 + 3/4) }a + K(h + «]
(ft ^

Cm0 — — [jff>o + K2(2m3 + 4^4) }a + K(mi + w2)].

The moment coefficient corresponds to the stalling moment about the
center of the airfoil. If the moment is referred to a point on the chord at a
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distance d back of the leading edge, the corresponding moment coefficient Cm
will be

c« = c».-Ci(i---i)

= — [{w0 + K2(2m3 + 4 m^))a + K{m\ + m2)] (64)

- (y - y) 2ir[{lo + KHh + 3/4)}a + K{h + I2)].

At the aerodynamic center, the corresponding moment coefficient should be
independent of the angle of attack a. From Eq. (64), this condition gives the
distance d of aerodynamic center back of the leading edge as

d 1 1 wo + K\2mi + 4m 4)— =    (65)
c 2 4 l0 + K\h + 3/4)

Then the moment about the aerodynamic center is given by the following
coefficient:

ttK f m0 + K2(2vi3 + inti) .
c= t ri+"!) ~ 1,+to+3« +w 1 ■ •(66)']■

The numerical values of d/c and CMa.„. calculated from Eqs. (65) and (66)
are plotted in Figs. 7 and 8 against the thickness ratio 5 for different values
of K.


