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1. Introduction. The purpose of our lecture is, briefly stated, the discus-
sion of periodic solutions of the differential equation

x + f(x) = F cos cot, (1)

in which f(x) is in general a nonlinear function of x. For f(x)=g/l sin x we
have, for example, the case of the simple pendulum with a periodic external
force. Such a differential equation may occur in electrical problems when iron
is contained in the magnetic circuit.1 Any system with one degree of freedom2
and consisting of a mass and an elastic restoring force will lead to a differ-
ential equation of the type (1) if the displacement x is not kept very small.

The problems to be discussed here differ essentially from those of self-
excited oscillations where negative damping is involved, as is the case for the
group of problems first treated by van der Pol. Neither the nonlinear char-
acter of the restoring force as such nor linearity or nonlinearity in possible
friction forces is responsible for the differences. In the case of self-excited
oscillations results are altered but little if a nonlinear restoring force is as-
sumed, while the results to be discussed here would not be altered in general
character if nonlinear positive damping were assumed. In other words, it ap-
pears that even a slight negative damping will dominate the entire phe-
nomena.

Our discussion will yield, for the most part, results which are already well
known. Much of the material can be found in the standard textbooks, e.g.,
in the books of Timoshenko [28] and den Hartog [5] cf. also [11, 20]. How-

* Lecture given at the Conference on Non-Linear Mechanics, Brown University, August
1-3, 1942. Manuscript received Oct. 15, 1942.

1 For this subject see [32] and the list of references given there.
2 Some cases of free oscillations with two degrees of freedom have been treated [4] and

[12] (3. Mitt.). For experimental results in a case with infinitely many degrees of freedom,
see [22],
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ever, the problems are of sufficient intrinsic importance that they merit
thorough consideration and discussion.

We are interested, to begin with, in obtaining insight into the physical
phenomena connected with the case under discussion. It turns out that it is
highly useful to begin by obtaining information of a qualitative character.
Once this has been done, it is not very difficult to see how one should proceed
to obtain accurate quantitative information. The validity of the methods to
be discussed here could be justified rigorously in most cases, but we do not
wish to take up these matters here. We prefer to stress methods which lead
to the essential qualitative information in as simple a manner as possible.
What might be found original in this lecture consists largely in the exploita-
tion of this point of view.

2. Nonlinear restoring forces. The differential equation (1) has been
treated for a considerable number of different restoring forces/(x), cf. [5, 6, 7,
16, 24, 25, 28]. Some of these cases are indicated in fig. 1:

'Soft" spring

Fig. 1

The forces indicated in fig. 1 are symmetrical, i.e. /(— x) = —f{x). This need
not always be the case, of course; but we shall assume it in what follows. The
last two examples, for the hard and soft springs, indicate the essential distinc-
tion between different types of springs, i.e., those'for which the stiffness f (x)
is an increasing or a decreasing function of x. The first case is typified by a
mass attached to a stretched string, the second by the pendulum.
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Since methods and also qualitative results appear not to depend greatly
upon the special form of fix), we shall choose for this function always the
expression

f(x) = ax + (ix3, a > 0.

In any case there is no great loss in generality involved for moderate values
of x, since our expression might be regarded as the linear and cubic terms in
the power series for f{x). Note also that /3 > 0 characterizes a hard spring
(stretched string), while /3<0 characterizes a soft spring (pendulum).

The differential equation (first treated by Duffing [8]) which we want to
consider in the following is, thus,

x + (ax + fix3) — F cos ut. (2)

3. Periodic solution. We seek periodic solutions of (2) with frequency «.
(The term frequency will be used here in place of the more correct term circular
frequency, since no confusion is likely to result). That solutions of (2) other
than periodic ones exist is certainly true (even unbounded ones exist for /3 <0).
However, the literature of the subject is almost entirely devoted to the peri-
odic solutions, which are the interesting ones in the engineering applications.
Apparently the experimenters always find periodic motions, at least after
some transient motions have died out. Viscous damping, which is always
present in any actual case, seems to act in such a way that the motions in a
wide variety of cases tend, as t—* , to periodic ones. It would be of consider-
able interest to prove that the solutions of (2) with a damping term added
(and under appropriate conditions) are of this character.

We turn, then, to the problem of finding periodic solutions of (2). No ex-
plicit solutions of this differential equation are known and we are forced to
turn to approximate methods. Perhaps the simplest of these is the iteration
method. Let us write (2) in the form

x = — (ax + Px3) + F cos ut (3)

and insert
xo = A cos oit (4)

as a first approximation in the right-hand side. This means, in effect, that we
assume (3 to be small so that a motion not greatly different from a simple
harmonic motion can be expected. In fact, we assume in all of our methods
but one that /3 is small. Upon using the identity

cos3 ut = J cos wt + J cos 3ut (5)

we find

Xi = — (aA + fPA3 — F) cos wt — IPA3 cos 3ut (6)

as equation for the next approximation xi. Integrating this one obtains
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1 1 (SA3
Xi — — (aA + J/3^43 — F) cos o>t  cos 3coi, (7)

co2 36 a>2

the integration constants being taken as zero to insure that xi and the next
following approximation x2 be periodic.

So far this is quite straightforward. What to do from now on is not so
clear. One might seek to continue the process by inserting Xi in the right side
of (3) in order to find an Xi, etc., which would be a rather natural procedure.
The significance of this procedure can be illustrated by the following figure
which indicates the well known response curve for the linear forced vibration,
i.e., a curve showing the amplitude | ̂ 4 | of the steady forced vibration as a func-
tion of the frequency co, the force amplitude F being a parameter (fig. 2):

IAI

t£T to

Fig. 2

The procedure just outlined would mean that co is held fixed while | A \
is left open, for /3?^0. This would yield certain curve (shown dotted) in the
neighborhood of the linear response curve. It is clear that there would be
difficulties near co = \/a. But worst of all, the really essential features of the
response curves for would not be obtained at all.

The method used by Duffing [8], who seems to have been the first to
obtain the significant results for the differential equation (2) was as follows:
the coefficient Ai of cos cot in (7) is taken equal to A in (4), on the ground that
Ai should differ but little from A if (4) is truly a reasonable first approxima-
tion. Also, Duffing argues, such a procedure would furnish the exact result
in the linear case (/3 = 0) and might hence be expected to yield good results
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for /3 small, which we assume here anyway so that convergence can be ex-
pected. This reasoning of Duffing leads thus to what proves to be the decisive
relation (for A

F
co2 = a + ijM2  (8)

A
between the amplitude A and frequency co of the periodic solution. The rela-
tion (8) has been written purposely so that co2 is given as a function of A : as
we shall see it is decisive to consider A as a prescribed quantity in terms of
which co is to be determined.

Before discussing the significance and interpretation of (8), let us first
obtain the same relation by a procedure which is perhaps a more systematic
one. Equation (3) is modified by adding a term co2x to both sides:

ic + oo2x = — [(a — u2)x + /3a;3] + F cos co/. (9)

As a first approximation x0 to a periodic solution we begin with the solution
of (9) for a = co2, /J = 0, F=0, i.e., with a free undamped linear oscillation.
This leads at once to

Xo = A cos cot, (10)

with A arbitrary. Upon insertion in the right-hand side of (9) and use of (5)
once more we find

X\ + co2Xi = {(co2 — a)A — j(SA3 + F} cos cot — \/3A3 cos 3cot. (11)

We require always that the solution be periodic; hence it is necessary that the
coefficient Pi of cos cot in the right hand side of (11) should vanish in order to
avoid the resonance case and hence the occurrence of nonperiodic terms in
the solution of (11). The vanishing of this coefficient yields, obviously, the
same relation as (8), which is to be regarded as an equation to determine co
after A has been prescribed. Once this relation has been satisfied, the solution
of (11) will be

PA3
xi = Ai cos cot + Bx sin cot H cos 3co/,

32co2
(12)

in which A \ and B\ are arbitrary. The method of fixing Ai and B\ is, however,
now clear. We simply set A\ = A and JBi = 0, the value of co being left open.
If we stop with the degree of approximation implied in X\ we should have,
then, as approximate solution

1 PA3
x — A cos co* -| cos 3wt. (13)

32 F
a + f/L42 A
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It is perhaps worth while to consider how the iterations should proceed:
X\ from (13) is inserted again in the right-hand side of (9). A term P2 cos ut will
again occur and we must require, as before, that P2 = 0. The equation P2 = 0
yields an improved relation between co and A that takes the place of (8).
After integration the coefficient of cos ut is again prescribed to have the value
A while the coefficient of sin cot is taken as zero.

One could interpret this method as meaning that the first coefficients in
the Fourier series for x(t) are prescribed once and for all to be A and zero,
while the frequency is left open. In what follows it is convenient to speak of
the quantity A as the amplitude of the oscillation, though it should be referred
to rather as the first Fourier coefficient.

Our procedures, in any case, require that A be fixed while co, the frequency,
is to be determined by relation (8). Why this at first sight seemingly unnatu-
ral procedure leads to the desired results can be best seen through a discussion
of relation (8), which yields a set of curves, the response curves (in first ap-
proximation), with the force amplitude F as parameter. Usually the sign of
A is not considered essential (it means a phase shift) so that only ] A | is
plotted. The curves for | A | against co are then readily seen to be of the form
shown in fig. 3, where curves for /3>0, /} = 0 and /3<0 are given:

IAI IAI

vs.
/3 = 0

Fig. 3

vs:
/3<0

The interpretation of the effect of the nonlinearity on the response curves is
quite clear: The entire family of response curves (with Fas parameter) for the
linear forced oscillations is bent left or right depending upon whether the
spring is a soft or a hard one. That these curves mirror the essential facts,
at least for /3 and A not too large, cannot be doubted.

We can now see the reasons why A, instead of co, should be prescribed. To
begin with, we started our approximation with co = \Za, /3 = 0, F= 0, that is,
at point 1 in fig. 4, which superimposes curves for /3 = 0 upon curves for
/3>0. One sees that, for (3 = 0, A is completely arbitrary while co is fixed
and it is therefore necessary to prescribe A but leave co open for /3?^ 0.
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The further steps in the iterations correspond to the passage from this
state to one indicated by point 2 in fig. 4. One sees also that to hold co fixed
while varying A could yield at most one of the branches of the response
curves.

This dis.cussion indicates that the guiding principle to be followed inde-
pendent of the particular scheme of approximation used is to observe what is
arbitrary and what is fixed in the linear case, i.e., for /? = 0. For /3s^O, any
quantity that is arbitrary for j3 = 0 should be prescribed, and vice versa.

4. Other methods. Before proceeding to draw the interesting physical con-
clusions from the response curves, we prefer to discuss some other methods
of approximating the periodic solutions of (2).

One of the best known and most often used methods for nonlinear prob-
lems is the perturbation method, cf. [28], which consists for our problems
in developing the solution x(t) in powers of a parameter, say «, with coeffi-
cients prescribed to be periodic functions of t:

x = Xo + tX\ + e2x 2 + • • • . (14)

However, as we have seen, the frequency should not be prescribed but rather
left open, and this requires that co should also be developed with respect to e:

<0 = COo -f- + e2Ci>2 + • • • , (15)

where the co,- are constants. It is awkward to work with functions which have
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a variable period, but one can avoid this by introducing a new variable d=ict,
so that (2) becomes

w2x" + (a# + fix3) = F cos 0, (16)

the prime meaning differentiation with respect to 6. The functions Xi in (14)
can now be prescribed to have the fixed period 2ir. The perturbation series
(14) and (15) are now to be inserted in (16), and the coefficients of the powers
of e in the resulting series are equated to zero. The result is a set of linear
differential equations for the Xi. The parameter e is to a certain degree arbi-
trary. A very reasonable choice for it would be to take e = j3, so that (14) could
be considered a development in the neighborhood of the solutions of the
linearized vibration problem. The first few steps lead to essentially the same
result as those obtained above by iteration. One finds, for example, that rela-
tion (8) results from the periodicity requirement. It should be said that the
convergence of the perturbation series could be established with no great
difficulty.

Since the solutions which interest us are periodic ones, they will possess
Fourier series developments. This suggests writing the solutions x(t) at the
outset as such a series with undetermined coefficients:

x = A o + A i cos co/ A 2 cos 2ut + • • •
(17)

+ Bi sin cot + Bi sin 2cct + • • • .

Upon insertion into (2) one obtains an infinite set of nonlinear algebraic equa-
tions for the Ai and Bi which in their turn are to be solved by iterations or
perturbations. Our previous experience indicates, however, that we should
not prescribe co but rather the first coefficients in (17) and this is decisive in
fixing the correct set-up for iterations, say. Probably the Fourier series method
is the simplest for actual computation once one has the clue to the correct
procedure.

The approximation methods considered so far have all taken the solution
for the linear free oscillation as a starting point. Although it is true that the
significant qualitative features of the response curves can thus be obtained,
it is clear that other procedures could be expected to yield more accurate
results. Instead of beginning with the free linear oscillation, for example, one
might begin with the free nonlinear oscillation, that is, at point 1' rather
than point 1 in fig. 4. For a given value of the force amplitude F it is
quite obvious that the solution corresponding to point 1' is much nearer to
the desired solution (point 2) than is point 1. It is, of course, quite feasible
to begin with a solution corresponding to point 1', i.e., with a solution of
x+/(x)=0, since such a differential equation can be solved by explicit in-
tegration. With this solution as a basis one might then proceed by the per-
turbation method using F as small parameter, as for example has been done
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by G. Hamel [9] and R. Iglisch [12, 13]. The method of variation of parame-
ters has also been used, for example, by E. W. Brown [4], and A. N. Krylov
and N. Bogoliuboff [18, 19] have used such methods in a considerable number
of papers.

The method of M. Rauscher [24, 25] is an iteration procedure which also
takes the solution corresponding to point 1' as its starting point. It is con-
venient here also to introduce the variable 9=ut in order to work with func-
tions which have a fixed period (as in the perturbation method). With this
variable our differential equation is

coV + /(as) =. F cos 6. (18)

The idea of Rauscher is to take as first approximation the periodic solution
x0(9) of

wlx" + /(at) = 0 (19)

which has a prescribed amplitude A (i.e., (*o)max = .<4). The quantity w0 is to
be determined in such a way that x0 will have the period 27r. This is a problem
that can be solved by explicit integration, which may be carried out graphi-
cally if necessary. The quantity w0 is, of course, taken as a first approximation
to the unknown frequency w. The essentially new idea of Rauscher consists
then in replacing 9 in the right hand side of (18) by the function 90(x) ob-
tained by inverting the solution x0(9) of (19), over a half period in which
*o is a monotone function of 6. This yields as equation for the next approxima-
tion:

oifx" + f(x) — F cos [0o(»)] = 0, (20)

which is an equation of the same type as (19): it differs only in that the re-
storing force is different. Its solution, for the same fixed A and same period 27t,
yields a second approximation *i(0) and a new value «i for co, which will in
general be different from w0- The general scheme of this iteration method thus
consists in finding the solution xn{9) of period 27t of

03lx" + f{x) — F cos [0„_i(a:)] = 0 (21)

for 0*r„)max="'4, where 6n-i(x) has been obtained by inverting the solution of
the equation for (n — 1). At the same time the reth approximation to„ for w is
found. Actually, there is no need to invert the solution each time: The
Rauscher method makes direct use of the fact that the solution of an equation
of the type (19) is obtained most conveniently at the outset in the form
9 = 9(x). In the case of the pendulum, for example, the time is obtained as an
elliptic integral which must be inverted to obtain the displacement as an
elliptic function of the time.

The amount of numerical computation is not small in this method, but
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the convergence is so rapid that it may well be the best method of obtaining
accurate quantitative results. Rauscher finds that the second step usually
furnishes a very close approximation. It might be objected that the method
of Rauscher could not be used if viscous damping were present since the differ-
ential equation

x" + cx' + f(x) = 0

cannot be integrated explicitly. However, the term cx' can be treated in
much the same manner as the term F cos d once a phase shift has been in-
troduced.

Finally, brief mention should be made of two other methods. The Ritz
method has been used [8, 9, 27, 31 ]. It consists in minimizing the expression

ax2 x4 + 2xF cos cct\dt
2 )

with respect to periodic functions x(l) of period T = 2ir/u. The expression at-
tains a minimum, however, only for soft springs (/3<0).

Fig. 5

In case one is interested in obtaining a solution satisfying given initial
conditions (such a solution need not be periodic), the graphical method of
E. Meissner [23] is to be recommended. The method is particularly well de-
signed for just the type of differential equation considered here.

S. Jump phenomena. We turn now to the physical conclusions which can
be drawn from the form of the response curves. Instead of discussing these
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phenomena on the basis of the curves of fig. 3, we prefer to consider the
analogous curves which result under the assumption of slight viscous damp-
ing in the system. By analogy with the response curves in the linear case with
damping, one would expect the curves to be rounded off as indicated in fig. 5:
This is a point to which we shall return a little later.

In the following fig. 6, we show a typical response curve (i.e., for a given
value of the force amplitude F) for the case of a hard and a soft spring:

Fig. 6

Let us imagine an experiment performed in which the amplitude F of
the external force is held constant, but its frequency co is slowly varied. (If
co were held fixed and F slowly varied, the results would be of the same gen-
eral character.) Consider first the case of a hard spring (|3>0) and suppose
that co is rather large at the beginning of our experiment, i.e., we start at
point 1 on the curve. As co is decreased A slowly increases through point 2
until point 3 is reached. Since F is held constant, a further decrease in co
would require a jump from point 3 to point 5 with an accompanying increase
in the amplitude A, after which A decreases with co. Upon performing the
experiment in the other direction, i.e., starting at point 6 and increasing co,
the amplitude follows the 6—>5—>4 portion of the curve, then jumps to point 2
and afterwards slowly decreases. The circumstances are quite similar with a
soft spring, but the jumps in amplitude take place in the reverse direction.
It would not have been necessary, we see now, to consider the influence of
damping in order to conclude that a jump from point 3 to point 5 should
take place (for (3>0) on decreasing co, but the jump from point 4 to point 2
on increasing co would be inexplicable on the basis of the curves of fig. 3.

This curious behavior of nonlinear systems has often been observed by
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experiment. Probably the first to discuss it experimentally was O. Martiens-
sen [21 ]. Martienssen carried out his experiments with an electrical apparatus
involving a condenser and an inductance with an iron core; he ascribed the
results to the nonlinearity.

6. Effect of viscous damping. We wish to discuss briefly a method of
treating the effect of viscous damping, i.e., the modifications which result upon
adding a term cx, c> 0, to the left-hand side of (3):

x + cx + {ax + Px3) = F cos wt — G sin ut. (22)

The amplitude H=\/F^+G2 of the external force is prescribed, but the ratio
F/G is not prescribed in order to permit a phase difference between the ap-
plied force and the resulting periodic displacement.

The iteration method can be applied in much the same manner as above
by beginning with Xo = A cos ut as a first approximation. In place of the
relation (8), we now have the following two relations:

(a - co2)A + f/M3 = F, (23)

ccoA = G. (24)

Once can draw an interesting, though not unexpected, conclusion immedi-
ately. It is that no periodic motion except the state of rest can result if there
is damping but no external force, i.e., if F = G = 0 with c^O. In fact, (24) is
satisfied in this case only for A =0 which implies x0 = 0.

Equations (23) and (24) are squared and added to obtain

[(a - <o2M + i0A*]* + cWA* =F2+G*= H\ (25)

which gives the relation between the amplitude A and frequency co of the
vibration which results from the force amplitude H. Equation (25) replaces
(8) for this case; it of course reduces to (8) when c = 0.

The discussion of the response curves furnished by (25) turns out to be
quite easy and to yield the expected results. One finds that the curves have
only one branch instead of two as in the undamped case, and that each curve
shows a single maximum for A. The locus of the maxima (for different H) is a
curve which runs close to the response curve for the free undamped oscillation
(H = c = 0), always remaining to the left of it. With no damping there is only
one vertical tangent on each response curve. With damping a second vertical
tangent appears; the new point of tangency lies near to the curve for free
undamped oscillations. These results have already been indicated in figs. 5
and 6.

It is of some interest to note that the curves for values of H less than a
certain limit value will have no vertical tangents, which means that for such
amplitudes no jump phenomena would occur.

The effect of viscous damping on the response curves appears to have been
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discussed first by E. V. Appleton [l]. Appleton uses the method of variation
of parameters. He investigates also in detail the stability of the solutions. It is
perhaps of interest to note that Appleton was led to the problem through ob-
serving the peculiar behavior of a certain galvanometer at the Cavendish
laboratory at Cambridge. This behavior corresponds to what was called jump
phenomena above.

7. Stability questions. We shall discuss briefly the stability question for
the cases without damping. Probably the most difficult question in any con-
sideration of dynamic stability is that of the definition of stability itself in a
reasonable way. Into this question we do not wish to enter here. We take,
simply, the following often used definition of stability: let x{t) and x(t) + &e(<)
be two solutions of our differential equation. Consider the variational equation
which results when x + 5x is inserted in the original differential equation and
powers of 5x above the first are neglected. If all solutions Sx of this equation
are bounded, then x(l) is said to be stable, otherwise unstable.

In particular, the variational equation for Duffing's equation (2) is

8x + (a + 3/3x2)8x = 0. (26)

In the cases under discussion here x(t) is a periodic function and thus (26)
is a Hill's equation. The question is then whether for a given x{t) all solutions
of (26) are bounded or not. Or we might put the problem a little differently
by referring to the A -co-plane, the points of which characterize the periodic
solutions x{t). The problem thus is to divide this plane into regions which
correspond to stable solutions and others which correspond to unstable ones.
Questions of this kind have been discussed, cf. for example [l, 18, 29, 31],
but the problem has apparently not been solved completely.

Some conclusions can, however, be reached without much difficulty. Con-
sider, for example, fig. 7, which indicates the response curve for F=0 (i.e.,
for the free oscillation) together with the locus of vertical tangents on the
response curves for F> 0. (In connection with the latter curve see [l2, 14,
15]). Our discussion of the jump phenomena would lead us to expect that the
shaded area between these two curves corresponds to solutions which are
unstable in some sense—quite possibly in the sense of the above definition.
It can at least be shown that the two curves in question really do represent
boundary curves between regions of stable and unstable solutions in the sense
of the definition.

If one were to be contented with taking A cos ut as a sufficiently close
approximation to x{t), then equation (26) would be a Mathieu equation.
For the special case of the Mathieu equation the problem of separating stable
and unstable solutions has been completely solved. If one makes use of this
theory it turns out that our two curves have contact of the second order at
u = \Za, |^4 | =0 with curves delimiting a region of unstable solutions of the
Mathieu equation, the unstable region being that within the cusp.
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8. Subharmonic response. Up to now we have considered periodic solu-
tions of (3) for which the frequency is always exactly the same as that
of the external force F cos wt. Permanent oscillations with a frequency
I. b ' ' ' l/w> • • • of that of the applied force can, however, occur in non-
linear systems, in particular in our case of the Duffing equation. To this phe-
nomenon the term subharmonic resonance is usually applied.3

Fig. 7

The fact that subharmonic oscillations occur can hardly be denied since
they have been so often observed. But it is not an entirely simple matter to
give a plausible physical explanation for their occurrence. Let us recall the
behavior of linear systems. If the frequency of the free oscillation of a linear
system is w/« (n an integer, say) then a periodic external force of frequency co
can excite the free oscillation in addition to the forced oscillation of fre-
quency co. But since some damping is always present the free oscillation is
damped out so that the eventual steady state consists solely of the oscillation
of frequency w. Why should the situation be different in a nonlinear system?
The explanation usually offered is as follows: Any oscillation of a nonlinear
system contains the higher harmonics in profusion. Hence it is possible that
an external force with a frequency the same as one of these might be able to
excite and sustain the harmonic of lowest frequency. Of course this requires
that the damping (more precisely the ratio c/H) be not too great and that
proper precautions of various kinds be taken.

We shall not attempt to present a solution of the problem of subharmonic

* For literature, see [2, 3, 17, 18].
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response for the Duffing equation in all generality. Rather, we shall treat only
one special case. Also, damping will be neglected even though it should be
shown that subharmonic response occurs in spite of damping. This could be
done, but it would complicate our calculations unnecessarily without causing
any significant qualitative changes in the results, particularly if the damping
is small. In any case we are interested here, as in our previous discussion, in
qualitative rather than accurate quantitative results.

There is some advantage in introducing once more the variable 6=oit as
the new independent variable. The differential equation is

+ (ax + /3a;3) = F cos 9, (27)

in which it is to be remembered that co represents the frequency of the applied
force F cos ut. Our object is to find a periodic solution with frequency io/n.
We restrict ourselves to the case n = 3. We apply the Fourier series method
and set

6 59
x — A1/3 cos h Ai cos 0 + ^5/3 cos f- • • •

3 3

by analogy with the usual or harmonic case. (Terms in even multiples of 6/3
and sine terms drop out). Upon substitution of the series in (2) one finds the
relations

 ^JAys + jfi[Ai/3 + A 1/3^41 + 2A 1/3^1 + • • • ] — 0, (28)

(a — w )Ai -f- \^\A\i3 + 6^4i/3^4i + 3.41 +•••]= F. (29)

Equations (28) and (29) take the place of equation (8) which was fundamental
for the harmonic case.

Again we are faced with a problem of interpretation. Our previous experi-
ence offers a guide: we set /3 = 0 (i.e., we consider the linear case) and observe
that A1/3 must be taken zero unless co = 3\/a. If, however, co = 3\/a then^4i/3
can be taken arbitrarily, while Ai = — (l/8a)F is determined for a given value
of F. The term Ai/z cos 6/3 is evidently the free oscillation of arbitrary am-
plitude which may be superimposed on the forced vibration —(F/8co) cos 6
in the linear case. Hence we should prescribe Ai/t arbitrarily for but
then hold it fixed. The quantity F should also be prescribed, but the quanti-
ties co and Ai which were fixed for /3 = 0 should now be considered as functions
of A1/3 and F.

With this in mind we rewrite equations (28) and (29) in slightly different
form in order to perform iterations conveniently. This yields, after a division
of (28) by ^4i/3?^0:
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w = 9a + + A1/3-41 + 24i'+ • • • ], (30)

— 8ayli = Z7 -f- (co — 9a)A i — iP[Ai/3 + 6.4 1/3^1 + 3A % + • • • ],

or

— 8aAi = F \f}\Auz — 2\Ai/iAi — llAi^Ai — 51^4i -f- • • • J, (31)
the last equation resulting through elimination of w2.

We begin the iterations with the values for j3 = 0, i.e., with Ays prescribed,
<d = 3Va> and A\= —F/Sct — A. The next step yields

J = 9 a + »&[A 1/3 + A 1/3/1 + 2 A2], (32)

Ai = A + 1/3 — 21yl 1/3^1 — 27A1/3A — 51vl ]. (33)

Equation (32) is readily discussed: it represents an ellipse or a hyperbola
in an w-^i/3-plane, depending on the sign of /?. Also w has an extremum for
A1/3 = — \A and w2 has as value there

"2 = 9(a + UP A2). (34)

Thus the subharmonic vibration can exist only if

^    fi < 0u ^ 3V a + HP A2 for ^ > q (35)

If y3?^0, we may conclude that no vibration with u = 3\^a can exist; i.e., no
subharmonic response with exactly the frequency of the linearized problem
can exist. Some authors describe subharmonic response as an oscillation with
exactly the frequency of the linearized problem excited by a force with three
times this frequency. At least in the case of the Duffing equation, such an
oscillation cannot occur.

Interesting conclusions can also be drawn from relation (33), which de-
termines the second Fourier coefficient of the subharmonic vibration as a!
function of A1/3. For A1/3 = 0 relation (28) is satisfied identically while relation
(29) reduces to relation (8) for the "harmonic" case. Hence the subharmonic
vibration results through bifurcation from the harmonic one. This takes place for

Ax = A - M0-43- (36)
In addition we find for A1/3 = 0

A
dAi/d(u2) = >0 (37)

8

and this determines the direction in which the new branch leaves the original
one.

Fig. 8 indicates the nature of the curves for .41/3 and |^4i| for both a
hard and a soft spring.
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Our calculations are accurate only for values of A\n that are small in com-
parison with those for A\, i.e., in the neighborhood of the bifurcation point.
More interesting from the point of view of the applications are the solutions
for which Am is large in comparison with A\, i.e., those for which the sub-
harmonic component dominates. It is very plausible that these solutions will,
like their harmonic counterparts, lie in the neighborhood of those for the free
oscillation if the force amplitude F is small. Of course, the response curve for
the free oscillation in question would be the one beginning at co = 3>J a and
not that beginning at co = yja.

Ai

SWT

Fig. 8

If the subharmonic component dominates sufficiently so that the resultant
solution x(6) is monotone in a half period from the maximum to the minimum,
then it is possible to apply the method of Rauscher to obtain it.

There are cases which are extreme in another sense, i.e., those in which
the dominating harmonic component has a frequency that is a very small
fraction (instead of 1/3) of the impressed frequency. In cases involving non-
linear damping such phenomena occur—subharmonic oscillations up to the
200th have been observed, apparently.

9. Other periodic solutions. The harmonic and subharmonic oscillations
so far considered do not exhaust the possibilities of periodic solutions. There
exists a great variety of other periodic solutions which arise near u = y/a/n,
n = 2, 3, • • • , in contrast with the subharmonic oscillations which arise near
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co = ny/a. Among them are periodic solutions in which the harmonic compo-
nent of frequency nu> is dominant. Since the fundamental frequency is w in
such oscillations, they are not exact counterparts of the subharmonic ones;
nevertheless they might be called superharmonic oscillations. They can be ob-
tained by a perturbation method beginning with the solution of the linearized
problem (/3 = 0) x=A\ cos ut-\-An cos nut for u = \/a/n, Ai = n2/(n2 — l)F,
while An is prescribed arbitrarily. Such solutions have been investigated theo-
retically, cf. [ 10, 12, 13], by a different method. They do not appear to have
been observed experimentally.
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