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ON THE VIBRATIONS OF A CLAMPED
PLATE UNDER TENSION*

BY

ALEXANDER WEINSTEIN and WEI ZANG CHIEN
Department of Applied Mathematics, University of Toronto

The object of the present paper is the computation of the fundamental
frequency of a vibrating clamped square plate under uniform tension. It will
be seen that the method used here reduces our problem for a plate of any
shape to the membrane problem for the corresponding domain. For this rea-
son similar numerical results could be obtained for a number of other shapes.
A similar question has been discussed for a circular plate by W. G. Bickley1
in connection with the problem of reception of acoustic signals in a condenser
microphone. The circular plate is an elementary problem from the theoretical
viewpoint. However, the actual calculations involving Bessel's functions are
rather heavy. Bickley was able to give the frequencies only for a small range
of the tension.

The frequencies of a square plate cannot be obtained explicitly in terms
of elementary functions. However, the Rayleigh-Ritz method yields an upper
bound for these quantities. The result cannot be considered as satisfactory
since this method does not give us an estimation of the error. Fortunately,
an increasing sequence of lower bounds can be obtained for all frequencies
by the application of a variational method already introduced by one of the
authors in several vibration and buckling problems. Combining these lower
bounds with the upper bounds obtained by Rayleigh-Ritz, we obtain a narrow
interval in which our frequencies are located.

Moreover, it is obvious that for questions like that of microphone recep-
tion, the lower bounds are the more important data.

The theory of the new variational method has been developed in several
papers.2 The modifications in the present case are slight. For this reason we
will omit all theoretical details. The reader can easily reconstruct the proofs
of the rules which we are following here.

Let 5 be the domain of a plate of arbitrary shape, and let C denote its
boundary. In the numerical applications we shall assume that S is the square
— ir/2^x, y^tv/2.

We denote by:
2h, the thickness of the plate
T, the tension

* Received Dec. 11, 1942.
• 1 W. G. Bickley, Phil. Mag. (7), 15, 776-797 (1933).

2 A. Weinstein, Memorial des Sciences Mathematiques, No. 88, 1937; A. Weinstein,
Portugaliae Mathematica 2, 36 (1941).
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E, Young's modulus
a, Poisson's ratio
p, density of the material
D = 2Eh3/3(l —it2), the flexural rigidity
u, the eigenfrequency (number of pulsations in 27t seconds)
w, the transversal displacement.

We put r = T/D. Our problem admits an infinite sequence of eigenfrequencies
« =wi, w2, • • • , in place of which we shall use the eigenvalues X =Xi, X2, • • • ,
where

2hpw2
X —  

D

The displacements corresponding to these eigenvalues will be denoted by
w=v)\,wi, • ■ • . These transverse displacements w satisfy in 5 the differential
equation:

AAw — tAw — \w = 0 (1)

with the boundary conditions

w = 0 (2)
dw/dn = 0 (3)

on C.
The equation (1) may be written as follows:

(A + a) (A - 0)w = 0, (a > 0, 0 > 0) (4)

with

13 — a = t, a/3 = X. (5)
or

T /r2 T /t2
a=- — + y — + \, p = — + y — + x. (6)

We see that we have the identity:

» = « + # in 5 + C, (7)

where u and u are solutions of

Am + au = 0, (8)

Au — f)u = 0. (9)

We have therefore also the following identity.

Aw = A (u + u) = [3u — au in 5 + C. (10)

The identities (7) and (10) will be useful in the following.
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It is well known that the eigenvalues of our plate can be defined by minima
problems, the same as could be used in the Raylpgh-Ritz method. For in-
stance, the fundamental eigenvalue X=Xi, in which we are interested in this
paper, is given by the variational problem:

C C C ff/dw\2 /dw\VM . j jj+ r J Js[(—) + (_)
= min = Xi

with the condition

dxdy

(ID

H{w) = J J" w2dxdy = 1 (12)

and with the boundary conditions (2) and (3).
Let us note that U is not the potential energy of the plate. Nevertheless

our variational problem gives us the correct differential equation and bound-
ary conditions. This variational problem will be denoted by P. The higher
eigenvalues X2, A3, • • • can also be defined by similar variational problems.
However, we shall not use them in this paper.

The Euler equation of P is the equation (1). This equation together with
the boundary conditions (2) and (3) defines a differential eigenvalue problem
P which admits the solutions w\, w%, • • ■ corresponding to the eigenvalues
Xi, X21 ■ • • .

In order to obtain an increasing sequence of lower bounds for Xi we begin
by cancelling in the variational problem P the boundary condition dw/dn= 0.
In this way we obtain a new variational problem P0:

U(w) = min = H(w) — 1 (13)

with the boundary condition w = 0.
The conditions in Po being less restrictive than in P, we have Xf ;SXi.

The Euler equation in P0 is the same as in P, namely the equation (1). How-
ever, the boundary conditions for this equation are

w = 0 and Aw = 0 on C, (14)

the last condition being a so-called natural boundary condition, i.e., a condition
which is automatically satisfied by the minimizing function in P0. Thie corre-
sponding differential eigenvalue problem P0 is given by (1) and (14). P0 ad-
mits a sequence of eigenvalues X®, X®, X3", • • • the smallest of which is
identical with the minimum X{0) in P0. In the case of a square plate, P0 is
identical with the problem of the vibrations of a supported plate under ten-
sion. The problem P0 can be solved, for a domain of any shape, in terms of
the membrane problem for the same domain, a fact which has been implicitly
used in the elementary theory of a square supported plate.
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In order to show this we use the identities (7) and (10) and we obtain
from (14) at once

u = 0, u = 0 on C.

In view of (8) and (9), it follows immediately that u = 0 in S+C and that (1)
and (14) are satisfied by w = u, where u is an eigenfunction of the membrane
problem Au+au = 0 in S, w = 0 on C. From the eigenvalues a. of this problem
we can compute the eigenvalues Xc0) in P0 by using the equations (5).

In order to obtain an increasing sequence of lower bounds for the eigen-
value Xi in P we link Po with P by a chain of intermediate variational prob-
lems Pi, Pi, • • • , the solutions of which can be expressed in terms of the
solutions of P0- In this way our problem for the clamped plate can be reduced
to the solution of P» which is, as we have seen, equivalent to the problem of
a vibrating membrane.

In order to show how this can be done, let

pi(s), pi(s), ■ ■ ■ , pm{s), • ■ • (15)

be an arbitrarily given sequence of functions defined on the boundary C of
the plate, 5 being the arc, and pi(s) being positive. The problem Pm
(m = 1,2, ■ ■ • ) is then defined as follows:

Problem Pm: Find the minimum Xim) of U{w) with the condition H(w) — 1
and with the boundary conditions

L
w = 0 on C, (16)

dw
ik ds = 0, k — 1, 2, • • • , m. (17)

dn

The conditions in Pm are more restrictive than those in Pm_x but they are
less restrictive than the boundary conditions in P.

We have therefore X[0) ^X'2) ^ • • • ^Xi. The minimizing function w
in P satisfies the same Euler equation (1) as in P0 (or in P), but the boundary
conditions are given now by the equations (16), (17) and by

Aw = aipi + • • • + ampm on C, (18)

the last condition being again a natural boundary condition. The constant
coefficients a\, • • • , am are unknowns. In order to solve Pm we have to de-
termine the lowest eigenvalue of the differential problem Pm defined by (1),
(16), (17) and (18). We use again the identities (7) and (10) in a way de-
scribed in our previous papers. In order to avoid repetitions which would
considerably increase the length of this paper, we will only formulate the
rules for the computation. It can be shown that X(™' can be computed by the
following procedure. Denote by Ui and u, (i = 1, • • • , m) the solutions of
the equations
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Am,- + aui = 0 (19)

Aili — = 0 (20)

with the boundary conditions

Mi = - pi(s) (21)

= Pi(s) (22)

where a and are considered as parameters. These equations can be solved
in terms of the solutions of Po. Put Wi = Ui-\-Ui and compute the quantities

/dwjpi— ds; i,j= 1, • • • , m, (23)
c an

where the parameter X is defined in terms of a and /3 by (5) and (6). Then X(,m)
is the smallest root of the determinant equation

||«»»00|| = 0; i, j = 1, • • • , m (24)

provided that the smallest root is smaller than the second eigenvalue of
the differential eigenvalue problem P0, defined by the equations (1) and (14).

The calculation of (23) can be further simplified by introducing a sequence
of harmonic functions

pi(x, y), pt(x, y), • ■ • , pm-i(x, y), pm(x, y), ■ ■ • (25)

whose boundary values are given as in (15). Then by Green's theorem, (23)
can be written as follows

<Xij(\) = j*J" Pi(x, y)(J3uj — <xuj)dxdy. (26)

Calculation for a square plate ( — ir/2^x, y Stt/2) : In this case, we take

cosh (|32i_ix/2) cosh (a2i-i7r/2)
Pi(x, y) =    —

cosh (2i — l)ir/2

| •{ cosh (2« — l)x cos (2i — l)y + cosh (2i — l)y cos (2i — l)x} (27)

where

«2i-i = V(2* - l)2 - a, 02= V(2i - 1 )2 + p. (28)

On the boundary, we have

\pi(± ir/2, y) — cos (2i+l)y cosh /32f_i7r/2 cosh a2i-i7r/2

pi(x, + 7r/2) = cos (2i — \)x cosh /32i_i7r/2 cosh a2,_17r/2.{

Then the solutions of the problems (19), (21) and (20), (22) are
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f Ui— —cosh /32i-_ix/2 [cos (2i— l)x cosh a2l_i;y+cos (2i — \)y cosh au-ix]
(3°)

Itii— cosh «2i_ix/2 [cos (2i— l)xcosh /32i_i;y+cos (2i— \)y cosh /32»— ix\.

Substituting pi(x, y) from (27), u, and m, from (30) into (26), we obtain after
a little calculation,

an = 4 cosh aa-\ir/2 cosh a2,-_it/2 cosh y32i—i7r/2 cosh /32y—i7r/2 (A a + Bit) (31)

where

[(2i-lj=+f2j — 0=] L«;,_1+(2»-l)!
JB«i= i [/32»_l-ar tanh /32i_i7r/2 — a2«-iir tanh a2l_i7r — 1/2]

{^OOJ
Btj= 0 for i^j.

It should be noted that the roots of ||a;,(X)|| are equal to the roots of ||ai,(X)||,
where

«»/ = ^ > i + Bij. (34)
The results of our numerical computations are given in Table I below.

The first and second columns give Xj0' and X20) for the supported plate. The
next three columns give the smallest root of the determinantal equation (24)

Table I

{

Supported Plate

1st eigen-
value X[0)

2nd eigen-
value xi0)

Clamped Plate

xf> Rayleigh-
Ritz method

5
10
15
20
30
50

100
200

14
24
34
44
64

104
204
404

50
75

100
125
175
275
525

1025

24.982
36.639
48.084
59.289
81.651

125.43
225.56
443.15

25.222
36.845
48.253
59.452
81.760

125.56
225.63
443.24

25.236
36.862
48.284
59.491
81.809

125.59
225.65
443.25

25.509
37.443
49.261
61.008
84.372

130.85
246.58
477.58

for m = l, 2, 3. Since these roots are smaller than the corresponding second
eigenvalues X20), they are, according to the general theory, identical with the
eigenvalues Xf', X®, X® and give therefore an increasing sequence of lower
bounds for the fundamental eigenvalue Xi in P. The corresponding upper
bounds, obtained by the Rayleigh-Ritz method are tabulated in the last
column. They have been obtained from the variational problem P by putting

w = A cos2 x cos2 y -f B cos5 x cos3 y.
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A comparison with X® shows us that the error in the values of \i is, for small
tensions, less than 1.2 per cent and, for great tensions, less than 7 per cent.
The fact that X[3> hardly exceeds X® makes it probable that the lower bounds
are much closer to the true value of Xi than the upper bound given by the
Rayleigh-Ritz method.

In figure 1 are plotted curves of fundamental eigenvalues of clamped circu-
lar plate and square plate against the tension r. The curve I is the values of
X® for the clamped square plate. The curves II and III are respectively the
fundamental eigenvalues for a circular plate of equal area and equal circum-
ference as the given square plate. Both of the latter curves are calculated
from the Bickley result.

240

200

100 T

Fig. 1. Curve 1: Clamped Square Plate (71-/2 31S —t/2)
Curve 2: Clamped Circular Plate (r = \/V)
Curve 3: Clamped Circular Plate (r = 2)

Remark. Using our lower bound X(f for a single value r0 of r we can easily
compute lower bounds for Xi for every value of r. This result can be obtained
by combining our method with an idea of R. V. Southwell.3 In fact, the lowest
eigenvalue Xi=Xi(r) is given by the minimum of U(w)/H(w) under the con-

H. Lamb and R. V. Southwell, Proc. Royal Soc. Ser. A, 99, 272 (1921).
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ditions (2) and (3). Denoting in (11) the first and second integrals by J(w)
and D{w) respectively we have

U/H = J/H + tD/H = J/H + t0D/H + (t - t0)D/H. (35)

Since D(w)/H{w) is obviously greater than 2 (i.e., greater than the lowest
eigenvalue of the vibrating membrane) we have for all values r>r0

(3)
Xi(r) > Xi(r0) + 2(t — To) > X! (r0) + 2(r — r0).

Putting ro = 5 we give in Table II the values of X®(5)+2(r — 5).

Table II
Aj(5)+2(r-5)

5 25.236
10 35.236
15 45.236
20 55.236

30 75.236
50 115.23

100 215.23
200 415.23

It will be seen that these lower bounds for Xi are smaller than the lower
bounds computed by our method alone.


