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CONCERNING THE ACCELERATION POTENTIAL*
By LIPMAN BERSf (Brown University)

The following lines aim at indicating the possibility of a more rigorous
approach to Prandtl's method of the acceleration potential for two dimen-
sional flow.1

We consider a steady incompressible potential flow past an airfoil of in-
finite span. We assume the profile, P, to be given by

z = x + iy — Z(s), 0 ^ s ^ st, (P)

where the sense of increase of the arc length s corresponds to the counter-
clockwise direction and the sharp trailing edge, T, is given by T = Z( 0) = Z(sr).
The position of the stagnation point, S, near the nose of the airfoil shall be
given by S = Z(ss). We also set

dZ
 = em.)t

ds

fi(s) being a continuous function of s and such that on the upper bank of the
wing near T, — 7t/2 ^/3^7t/2.

We denote by u and v the velocity components in the x and y directions
respectively and assume that

u = U > 0, v = 0, at infinity.

Then u—iv is an analytic function of z=x+iy and so is

$ + Hr = log (u — iv).

At S the function $+i\tr possesses a singularity. (There also is a singularity
at T, unless the angle there is 0.) may be determined as a solution of
the following boundary value problem:

A. To determine a one-valued analytic junction <3? -f--£SEr defined on the region
exterior to P and satisfying on P the boundary condition
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(— /3(s) for 0 < s ^ Ss
¥ = < ~ ~ (1)

(.7r — fi(s) for ss ^ s ^ sr

as well as the condition

$ = log U, $ = 0, at ! = ®. (2)

Equation (1) expresses that P is a streamline of the flow and takes care of
the Ivutta-Joukowsky condition (no flow around T). The unknown position of
S is uniquely determined by (2). For instance, let s=/(f) map |f| >1 con-
formally into the exterior of P, taking f = oo into z= °° and f = 1 into z—T.
Set f(ei9) —Z [17(d)], S=f(eiT). Then the condition (2) may be written in the
form

/» 2 T
*{Z[<x(0)]}</0 = 0.

0

In view of (1) we obtain

1 r2r= 2tt I p[<r(6)]d0. (3)
T J 0

From <E> we can calculate the pressure p. In fact, we have by Bernoulli's
equation

P + §P(«2 + *>2) - P„ + hpU>= Po, (4)
where p is the density, px the pressure at infinity and po the stagnation
pressure. Since <f>=log \ u— iv\,

P = Pa ~ y (5)

If the wing is infinitely thin, say given by

x = x, y = Y(x), — 1 ^ x ^ 1, (Pi)

the boundary value problem A takes the form:

B. To determine a one-valued analytic function defined on the region
exterior to Pi and satisfying on Pi the boundary condition

f— arc tan Y\x) on the upper bank of Pi,

= < — arc tan Y'(x) — j on the lower bank of Pi, — 1 ^ x ^ xs

arc tan Y'(x) on the lower bank of Pi, is | 1 ^ 1

(xs+iF(xs) being the stagnation point) as well as the condition (2).

If the wing is very slightly curved and very slightly inclined, the above
rigorous but inconvenient treatment can be simplified as follows. The dis-
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tance between the leading edge 2} = — 1 +t F( — 1) and the stagnation point 5
is small of second order as compared with the angle of attack. In fact, the
general character of the flow around P\ will be similar to that of a flow
around a straight line, say Pi,

y = — x tan a, — cos a ^ x ^ cos a. (P2)

By
1 1

2 = H e 2,a — (6)
4 K

the exterior of P2 is mapped into |f | >§ and T is taken into %e~ia. S is taken
into —\eria (this follows for instance from (3)). Therefore

S = — \{eia + e~3ia)

and, since in this case L= —e~'a, we have for small values of a

| L - S | ~ 2a2.

Now, <3?+i,ir possesses singularities at L and at S. For small angles of
attack we may assume that we will make a very slight error if we replace
these two singularities by a single singularity situated at L. In order to
determine the character of this singularity, we again consider the flow around
Pt. The complex potential, say for U= 1, is given by

1
w = f + — + (i sin a) log f (7)

so that, by (6) and (7),

dw dw / dz f + \eia
u — IV =

dz d{ / d$ S + \e-ia

and

$ + = log (f + %eia) — log (f + £e~*a).

This is (in the f-plane) the complex potential of a source at — %e~ia and a
sink at — |eia. For small values of a we may approximate this source-sink
system by a doublet with a vertical axis.

Thus we replace problem B by

C. To determine a one-valued analytic function <J>+^ defined on the region
exterior to Px, satisfying on Pi the boundary condition

= — arc tan Y'(x) (8)

as well as the condition (2) and possessing at L a singularity which assumes the
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form of a potential of a doublet with a vertical axis when the exterior of P\ is
mapped conformally into that of a circle (by a transformation f(z) withf'( <») > 0).

The actual solution of this problem is still difficult. Therefore we make use
of the fact that Pi is closely approximated by the slit

y = 0, - 1 g * < 1, (P3)

and replace the domain of definition of by the exterior of P3. Then we
obtain the following boundary value problem:

D. To determine a one-valued analytic function defined on the region
exterior to P3, satisfying on P3 condition (8) as well as condition (2) and possess-
ing at — 1 a singularity which, in the f-plane determined by

T('*7>2

assumes the form of a potential of a doublet with a vertical axis.

This problem can be easily solved. The presence of the singularity en-
ables us to satisfy both conditions, (2) and (8).

It remains to show that the method described above is identical with the
method of the acceleration potential, the latter usually being presented as
based upon the assumption

A p = 0.

By virtue of our hypotheses p—p<*> will be very small as compared to pK—po
(except at the neighborhood of the leading edge), so that disregarding terms
of higher than first order in (p—p«,)/(px—po) we have

P*> ~ P
log (po - P) = log (po - px) H —■

p0 ~~ pao

and, by (4) and (5),

p = — pJ/2$ + const.

On the basis of the above considerations an estimation of the error (due
to replacing the actual problem B first by C and then D) seems to be both
desirable and possible.


