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THE IMPEDANCE OF A TRANSVERSE WIRE IN A
RECTANGULAR WAVE GUIDE*

BY

S. A. SCHELKUNOFF
Bell Telephone Laboratories

The purpose of this paper is to derive approximate formulae for the im-
pedance of a transverse wire carrying uniform current (Fig. 1).

The total impedance Z to the current through the wire may be defined as

FZ = J' (0

where F is the applied voltage and I is the electric current in the wire. The
total electromotive force F is the sum1 of the internal electromotive force F,-
and the external electromotive force V,

V = V, + V.. (2)

Correspondingly, we have an internal impedance Zt- of the wire and the ex-
ternal impedance Ze. By (1) these two impedances are in series with each
other

Z=Z;+Ze. (3)

If the guide is infinitely long on both sides of the wire, the external im-
pedance (above the absolute cut-off frequency) is complex

Ze = Re + iXe. (4)

The resistance term represents radiation of energy into the guide. If the
frequency is within the principal frequency range and if K is the character-
istic impedance of the guide to the dominant wave, as seen from the wire,2
then evidently

Re - \K. (5)

We shall now calculate the impedance of the wire on the assumption that
its radius is small. The current in the wire will generate transverse electric
waves in which the field is independent of the j-coordinate. The general form
of the field (for z> 0) is

* Received February 8, 1943.
1 For an explanation, see S. A. Schelkunoff, Electromagnetic Waves, D. Van Nostrand Com-

pany, Inc., 1943.
2 And not from a plane current sheet generating a pure dominant wave.
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* lirx
HX(x, z) = 2L Hi sin "— e~riz,

1=1 a , .
(6)

" lirx
Ey(x, z) = — 2^ Killi sin e~Ti*,

i=i a,

where T; and Ki are respectively the propagation constant and the specific
impedance of a typical TEi,o-wave

/IV 4x2 ioi/x'V—-■ mx2 r.

The propagation constant of the dominant 7\Ei,o-wave is

/7T2 4t2 2 iri / X2
(8)

The dominant wavelength range extends from Xi = 2a to X2 — a, X2 being the
cut-off wavelength of TE2,0-wave. If a<\<2a, all the propagation con-
stants of secondary waves are real

/2X2

For the specific impedances we obtain

lir / 4 o2= *>i- (9)

Mfia / 4a2\_1/2 2a/ 4a2\~1/2
 (l- ) = iv—[ 1 J ■

/tt \ /2\2/ ZX\ Z2X2/

(10)

The external electromotive force Ve necessary to support current I
through a thin wire of radius r is

Ve = - bEy(d, r), (11)

where d is the distance shown in Fig. 1. This equation presupposes that the

1

Fig. 1 Fig. 2
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current is distributed uniformly around the wire. As the radius of the wire
increases, the current distribution gradually begins to depart from uni-
formity. From (1), (6), and (11), we have

V. b " lird
Ze = = — 2Z KiHi sin e~r,r. (12)

1 I i-i a

The next step is to calculate the coefficients H\. We shall assume that the
wire is so thin that the field outside the wire could be regarded as nearly equal
to that of an infinitely thin electric current filament along the axis of the wire.
For an infinitely thin filament, we have

2 rd^r I lirx
Hi = lim — I — sin dx as r —* 0. (13)

a J d 4 r a

Integrating and passing to the limit, we obtain

I lird
Hi = — sin   (14)

a a

Substituting (14) in (12), we have

b * lird
Ze = — J^KlS in2 e-iV; (15)

d 1=1 CL

and, therefore,
b ird

Re = — K i sin2 — >
a a

2b tv d
K = 2Re = — sin2 —, (16)

a a

b " lird
iXe = — ^2 Ki sin2 e~r'r.

CL 1=2 CL

Substituting from (10), we obtain

X2 N-1'22b Td / X2 \-
K = r\ — sin2 — ( 1 )

a a \ 4a2/

2b " 1 / 4a2\-1/2 lird
Xe-V— S  11 ) sift2 e~r,r-

X w I \ ;2X2/ a

(17)

Hence, the ratio of the external reactance of the wire to the characteristic
impedance of the guide (as seen from the wire) is

X2 ir<f A 1 / 4a2\-1'2 lird
 1 sin2 e_1V. (18)
P\2J a

Xe a / X2 ird - 1 /
 = —4/ 1 csc2—£—(l-
K XT 4a2 a tZ I \
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It is evident that the total inductance of the wire is a series combination
of inductances associated with the individual secondary TE waves, generated
by the current in the wire.

For the internal impedance of the wire, we have3

bloiar)
Zi = 1u 2"r™ ___ (19)

   .  / iUfli
<Ji = V iumigi + i««<), rji = A/ 7— •

V gi + tuei

This is a general expression applicable to dielectric wires as well as to metal
wires. In the case of metal wires, we let et = 0. Usually, the radii of metal
wires will be sufficiently large to make the modified Bessel functions in (19)
nearly equal so that approximately

hi b /ium b / irftii
Zi —  =  A / = A / (1 + i).

2tt r litry gi 2tt rV gi (20)

If r/a is small, the series (18) converges slowly. The difficulty may be
obviated with the aid of the following device. Let

«= (21)
i

be a slowly converging series; let

v = X) vi (22)
i

be a series of terms approximating (21) in such a way that the approximation
becomes increasingly better as I increases; then

u = vi + H ~ vd (23)
i i

so that (21) can be regarded as the sum of two series, of which the second is
more rapidly convergent than the original series. If now the sum of the first
series in (23) happens to be known, we have succeeded in replacing the
original slowly convergent by a more rapidly convergent series.

We shall apply this device to (18). First we rewrite (18) in the following
form

2lird
1 — cos-

X „ 1 /4a2 ird ™ a
 = —A/ 1 csc2— 2 „ e !V; (24)

y
3 See the book mentioned in footnote 1.
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then we note that as / tends to infinity, Intends to /ir/aand \/l — 4a2//2X2 tends
to unity. Hence, a typical term of the i>-series will be (1/7) [l —
cos(2lird/a)\e~lrrla, and (24) may be expressed as

2l*d
1 — cos-

X„ 1 /4a2 rdr - a 1
  =  \/ 1 CSC2   g-lrr/a -j- 7"
K 4 T X2 a L JT2 t J

2l*d
1 — cos-

(25)

A a / e-ri>- \r = £  (  - «-'"/«)
w / V / 4a2 /

r 1 J2x2
It is known that

" 1 1
2_, — e~lp cos Iq = log (1 — 2e~p cos q -f- e~2p); (26)
i=i I 2

therefore,

X. 1
K

1 /4a2 *dr 1 / 2ird \
= — \/ 1 csc2 — — log { 1 — 2e~rrla cos (- e~2x,la J

4 T X2 a L 2 \ a )
/ 2ir d\ 1- log (1 - e~Trla) - <rTr/o ( 1 - cos J + 7J. (27)

This can be transformed into

Xe 1 /4a2 ird [~ 1 / irr 2ird\
—- = — A/ 1 csc2 — — log ( cosh cos I
K 4 T X2 a L 2 \ a a )

1 irr ( 2ir d\ 1
 log 2 — log sinh e~TTla[ 1 — cos ) + T . (28)

2 2a \ a / J

An entirely different expression for Ze can be obtained by the image
method. Assuming again that r is sufficiently small and that the wire is not
too close to the boundaries of the guide and that consequently there is no
"proximity effect," we can immediately obtain

J r oo oo

Z„ = — vpb \ Ho(fir) + 2£F„Wa) - £ #o(2w/3a + 2pd)
4 L n=l n-0

00 1

— £ Hl(2npa + 2j3a — 2jid) .
n-0 J

(29)

This is a slowly converging series and is useless for direct numerical com-
putations; on the other hand, it may be useful for other purposes. Thus the
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difference between the external impedances of two wires of different radii is
obtained in the following simple form

Ze(rt) — Ze(ri) = ivPb [#o(/3r2) — £?o(/3ri)]

= \^b[j^r2) - /] + kfibi[N,(Prd - NB(fir,)].
The first term represents the effect4 of the radius of the wire on the impedance
of the guide as seen by the wire. The second term represents the difference
between the external reactances of two wires

Xe{r2) - Xe(ri) = - ^0(/3r2)]. (31)

This equation can be used for numerical calculations in conjunction with (28).
The slowly converging part of (29) is the mutual impedance between the wire
and the wave guide.

An expression for the mutual impedance between two parallel wires in
the wave guide can also be obtained by the image method. Thus we have
(<*t>di)

in 00
Z12 = — ypb Hl(fidi — pdi) + X Hl(2nfia + /3d2 — pdi)4 L „_i

oo 2 00

+ H0(2n(3a + fidi — fid2) — Ho(2nfia + (3di + f:ida)r2,
n—0

oo -1

— 22 H-\{2n$a + 2/3a — (Sdi — pd2) .
n-0 J

(32)

Next we shall deal briefly with the external impedance of a "split" wire
(Fig. 2). Let the electromotive intensity at the surface of the wire and the
current in the wire be

A miry
Ey = — 2^Em cos —— >

m=0 b
(33)

A WIT y
I - ^2 Im COS  

m=0 b

The complex flow of power is

T*
^ = ^-YeVeV*, = \b\Elu + ^-'ZEllX (34)

2 2 L 2 m=l J

where Ye is the external admittance of the split wire and V, the voltage across
this admittance. Since
  Ve = bE0, (35)

4 Which was entirely ignored in the derivation of (28).
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we obtain from (34)

_ I0 1 "■ EmE*m
e ~ V, + ~2 £ " EoEo* 36

where

Ym = — • (37)
bEm

The first term in (36) is the external admittance corresponding to a uni-
form current filament (Fig. 1) and, hence, is equal to the reciprocal of either
(15) or (29). The second term is the capacitative admittance (assuming that
X>2b) between the external surfaces of the two portions of the transverse
wire. The impedance diagram is shown in Fig. 3 where the parallel lines

xi

*" - = 1 xk

Fig. 3 Fig. 4

represent the wave guide, the inductive reactance XI is the reactive part of
(29), the capacitative reactance XI' is the reciprocal of the second term in
(36) and Xi is the reactance looking inward from the surface of the gap in the
wire. In the case illustrated by Fig. 4 the internal reactance is approximately

Xi= . 5 , (38)
iwtirr2

where r is the radius of the wire and 5 is the length of the gap.
The internal reactance of two hollow cylinders as well as the quantity

X" will be discussed in a separate paper. Here we shall merely derive general
formulae and show that roughly X" is equal to the external capacitative
reactance between two sections of a split transverse wire placed across infinite
parallel planes.

Each component Im cos (miry/b) of the total current I in (33) originates a
radial wave of the following type

ImKi(ymp) miry
H*(p) = -——   cos ——

2TrKi(ymr) b

r)ymImK0(ymp) miry
Ey(p) = cos 

2ifirKi(ymr) b
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where p is the distance from the axis of the current and ym is the radial
propagation constant of the mth cylindrical wave

/m2 7r2 4ir2 #11 / 4 b2
•y-» = /i/ =— \/1  (4°)y b2 X2 b V m2X2

If X>2b, all the radial propagation constants of order m higher than zero are
real. This explains why even the nearest image will have but little effect on
the admittance Ym except when the wire is quite close to the walls of the
wave guide, or when X is nearly equal to lb. Even when the wire is close to
the walls of the guide only the nearest image will have an appreciable effect
on Ym unless X is nearly equal to 2b.

The complete expression for the impedance Zm = 1 /Ym is

=o -Tf,—t r +2 £ k°2irijJrKi{ymr) L n=i
(2nyma)

oo oo -l

— X) Ko(2nyma + 2ymd) — X) K0(2nyma + 2yma + 2ymd) .
n=0 n=0 J

(41)

Equation (29) corresponding to the principal cylindrical wave (m = 0), is
of course, a special case of (41). The propagation constant T0 of the principal
wave, however, is pure imaginary and, hence, distant images have a pro-
nounced effect on Ze.


