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ON PLANE RIGID FRAMES LOADED PERPENDICULARLY
TO THEIR PLANE*

BY

W. PRAGER (Brown University) and G. E. HAY (University of Michigan)

1. Introduction. For purposes of stress analysis, the engineer prefers to
consider his structures as consisting of plane systems, each of which is subject
to forces acting in its plane. A typical example is furnished by the conven-
tional analysis of a parallel chord bridge span in which the side trusses take
the vertical loads and the top and bottom trusses the transverse loads due to
wind, etc. In civil engineering this resolution of space systems into plane com-
ponents is possible in most cases, and only very rarely is a structure consid-
ered as a unit in space. Accordingly, the methods of dealing with space
structures have not been developed nearly as much as those used in the
analysis of plane structures. Of course, the general principles of structural
theory, for instance the principle of virtual work or Castigliano's principle,
apply to space structures as well as to plane structures but, as is known from

Fig. la. Two-sparred wing.

the case of plane structures, these principles frequently do not offer the most
convenient approach to the solution of a particular problem. As regards
special methods, which have been developed so abundantly in the case of
plane structures, little work has as yet been done in the field of space struc-
tures. Most of this work is concerned with pin-jointed frameworks. The itera-
tion procedure of R. V. Southwell's relaxation method can be applied to space
structures as well as to plane structures,1 but efficient direct methods for the
stress analysis of rigid frames in space are entirely lacking. The present paper,
intended as a contribution towards the development of such methods, deals
with the particular case of plane rigid frames carrying loads which act per-

* Received Dec. 3, 1942.
1 See R. V. Southwell: Relaxation methods in engineering science, Chap. IV, Oxford 1940.
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pendicularly to the plane of the frame. An example of this type of structure
is the monoplane wing of Fig. la, where the spars A —A and B —B are con-
nected by several main ribs which are fastened rigidly to the spars. Another
example is the foot ring of an observatory cupola shown in Fig. lb.

The method proposed in this
paper makes extensive use of a
dual analogy between plane struc-
tures loaded in their plane and
plane structures loaded perpen-
dicularly to their plane. In the
case of a single straight beam

'this analogy forms the basis of
Fig. lb. Cupola foot ring. the. method of conjugate beams2

which can be considered as a par:
ticular case of the present method.

2. Definitions, notations and sign conventions. This paper is concerned
with rigid frames consisting of straight or curved members whose axes lie in
the same plane. This plane is called the structural plane. We will consider only
frames with members such that every cross section has a principal axis of
inertia at its centroid lying in the structural plane. Accordingly, when the
frame is subject to forces acting in the structural plane, the points on the axis
of any member remain in the structural plane. On the other hand, when the
frame is loaded perpendicularly to its plane, the displacements of the points
on the axis of any member are normal to the structural plane. For conciseness,
the first type of loading will be referred to as plane loading and the second as
space loading.

In the case of plane loading the stresses transmitted across any cross section
of a member of the frame are statically equivalent to the following stress result-
ants: 1) an axial force which, for the sake of brevity, will be called the pull
although it may produce either compression or ten-
sion ; 2) a transverse force, called the shear, which
acts in the structural plane normal to the axis of
the member under consideration; 3) a couple,
called the bending moment, which also acts in the
structural plane. In the case of space loading the
stress resultants are: 1) a twisting couple, called
torque, acting in the plane of the cross section;
2) a bending couple, called bending moment, whose
plane is perpendicular to the structural plane as
well as to the cross-sectional plane; 3) a transverse
force, called shear, whose line of action is normal
to the structural plane. Fig. 2.

2 H. M. Westergaard, Deflection of beams by the conjugate beam method, Journal of the
Western Society of Engineers, 26, 369 (1921).
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In order to arrive at notations applicable to both types of loading we
choose on the axis of each member of the frame an origin 0 and denote by s the
arc length of the axis measured from this point. A cross section B is then speci-
fied by giving the corresponding value of 5 (Fig. 2*). In most cases it will be
convenient to choose the origin O at one end of the member, in which case 5
will have positive values only. In order to establish appropriate sign conven-
tions for the loads, displacements, stress resultants and distortions at the
cross section B, we introduce a rectangular right hand triad with origin at B,
the x-axis being tangent to the axis of the member at B in the direction of
increasing s, and the y-axis lying in the structural plane (Fig. 2).

The loads which the structure carries at B may be forces or couples, either
concentrated or distributed, or both. The components of the concentrated
force at B, the distributed force at B, the concentrated couple at B and the
distributed couple at B we denote by Fx, Fy} FZ) fx, Jy- fn Cx, C Ih z' Cxi
respectively, relative to the rectangular triad at B. For example, Cx is a con-
centrated twisting couple, and is positive if its sense is the same as that of
the 90° rotation necessary to move the y-axis into coincidence with the 2-axis.
Not all the load components thus defined have practical importance; how-
ever, the analogies which we intend to establish appear more clearly when the
most general case is considered.

The force system transmitted across the cross section at B is equivalent
to a force at the centroid plus a couple. These will be referred to as the stress
resultants, and we shall denote their components by Rx, Ry, Rz, Mx, My, Mz
respectively, relative to the rectangular triad at B. Rx is the pull, Ry and Rz
the shears parallel and perpendicular to the structural plane, Mx the torque
and My, Mz the bending moments.

The stress resultants and the loads are connected by the equations of
equilibrium. If no concentrated forces are applied at the cross section B, the
equations of equilibrium for a straight structural member are:

Rx +f,= 0, M'x + cx = 0,

Ry + /„ = o, Mi + Cy - Rz = 0, (10
R', + fz = 0, M'z + c, + Ry = 0,

where the dashes denote differentiation with respect to the arc length s. If
concentrated loads Fx, Fy, Fz and Cx, Cv, Cz are applied at B, we have

Rx(s 4" e) — Rx(s — ~t" Fx = 0, Mx(s -f- e) — Mx(s — e) -)- Cx = 0,

Ry(s -f- e) — Ry(s — () ~t" Fy = 0, My(s -(- e) — My(s — e) -f- Cy = 0, (I")

Rz{s + «) — Rz(s — e) + Fz = 0, M z(s + e) — M z(s — e) + Cz = 0,

where e denotes an arbitrarily small length.

In Fig. 2 the origin of the system x, y should be marked B.
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The displacement of the cross section B is specified by the components
ux, uv, uz of the translation of the centroid and the components 0X, 6V, 6, of
the rotation of the cross section.

Finally, the six distortion components, gx, gy, gz and hXl hy, hz, of a straight
structural member are defined as follows:

gx Mx , hx — dx,

Sv = UV hy — Qy , (2')

gz " Uz Oy, hZ — 6Z ,

where the dashes again denote differentiation with respect to the arc length 5.
gx will be called the stretch, gv and gz the slips, hx the twist and hy, hz the bends.
Two structural members may be connected by a link which permits some
relative displacement of the end sections of the two members, for instance
by a hinge permitting a free bend. Such relative displacements can be handled
as concentrated distortions:

Gx = ux(s + e) — ux(s — «), Hx = 0x(s + — dx(s — e),

Gy = Uy(s + e) - Uy(s - «) , Hy = 6y(S + «) ~ 9y(s ~ e) , (2")

Gz = Uz(s + e) — uz{s — e), Hz = dz(s + e) - dz(s — «),

where e is again an arbitrarily small length.
For elastic structural members the stress resultants can be represented as

the products of the corresponding distortions and stiffness factors:

Rx OLxgx, -^y OLyg y, Rz OZzgz, (X)

MX fiXhX, My fiyhy, M Z = ft Z^ Z,

where ax = EA, av = GA/ky, az = GA /kz, /3xis the torsional rigidity of the mem-
ber, py = EIz, pz = EIy, E being Young's modulus, A the area of the cross sec-
tion, G the modulus of rigidity, ky and kz constants depending on the shape
of the cross section, /„ and Iz the moments of inertia of the cross section with
respect to the axes of y and z.

3. Analogy between statics of plane loaded and kinematics of space
loaded frames. For a plane loaded frame the loads Fz, fz, Cx, cx, Cv, cv and
the stress resultants Rz, Mx, My vanish. Similarly, for a space loaded frame
the displacements ux, uy, 6Z and the distortions Gx, gx, Gy, gy, IIz, hz are zero.
The remainiilg equations (1) for the members of the plane loaded frame then
are seen to correspond exactly to the remaining equations (2) for the members
of the space loaded frame according to the Table I.

Table I

Statics of Plane Loaded Frame Kinematics of Space Loaded Frame

Loads IX Fv, Cz
l/j| fui c*

Stress resultants Rx, Rv, Mz

Distortions ' -Ht, -Hy, -Gz
,-hx, -hy, -gz

Displacements Bx, 8y, u,
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At a point B where two straight members are rigidly fastened to one an-
other under the angle 4> (Fig. 3), we have the following relations between the
stress resultants of the plane loaded frame at the two sides of B:

Rx = Rx cos <t> + Ry sin <j>, Ry = — Rx sin <t> Ry cos <j>, Mz = Mz.

These relations correspond exactly to the following relations for the displace-
ment components of the space loaded frame on the two sides of B:

0X = Ox cos 4> + dy sin <£, 0„ = — 6X sin <f> + 9y cos <£, uz = uz. (5)

A curved member may be considered as the limiting case of _
a polygonal arrangement of straight members. Accordingly,
the correspondence between the stress resultants of the plane I x
loaded frame and the displacements of the space loaded frame
remains valid in the case of frames containing curved mem- Fig- 3-
bers. Of course, equations (1) and (2) in their present forms
do not apply to frames with curved members. Equations ap- Xi iX _
plicable to such frames will be developed in a later paper. * -

If more than two members join at the same point, the
analogy breaks down. This can be seen from the example in
Fig. 4, where we have for the stress resultants of the plane
loaded frame Fig. 4.

Rx = Rx — Ry*, Ry = Ry + Rx*,

and for the displacements of the space loaded from

77

0 *uy i Oy = By = ~ <?*■

-8-

B

The analogy therefore applies directly only to frames which consist Of a
simple chain of members without branch points. In spite of this fact the

analogy is very useful even in the case of more
complex frames since these may be considered
as consisting of simple frames to which the
analogy can be applied.

In order that the analogy indicated above
hold everywhere in the structures, it is neces-
sary that there can be a certain correspondence
between the various supports and links in the
frame with plane loading and the frame with
space loading. For example, the analogy is
maintained if to a pin support in the frame

pIG s with plane loading there corresponds a simple
support in the plane with space loading. A

consideration of certain types of supports and links leads to the results pre-
sented in Table II. This table is by no means complete.
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We shall now use this analogy to determine the influence lines for the
stress resultants of a statically determinate space loaded frame. We consider
the rectangular frame with three pin supports 1, 2, 3 shown in Fig. 5. Ac-
cording to a well known principle of the theory of structures, the ordinates
of the influence line for the bending moment produced at the section B by
transverse loads Fz are precisely the displacements uz produced by a unit
bend, Hv = \, at B. According to the analogy explained above these displace-
ments can be obtained as the bending moments, Mz, produced in the corre-
sponding plane loaded frame by the load, Fv= — 1, at B. This latter frame is
called the conjugate frame and is the three hinged portal shown in Fig. 6a.
The bending moments due to the unit load are easily computed and are shown
in Fig. 6b. The diagram showing the bending moments of the conjugate
frame is at the same time the influence line for the bending moment produced
at the section B of the space loaded frame by transverse loads F,.

B

2/3

a/3

1/3

a/3vJficM.

4 a/9

a/3b 'a/3b
Fig. 6a. Fig. 6b.

Similarly, the influence line for the torque Mx produced at the section B
of the space loaded frame by transverse loads Fz can be obtained as the bend-
ing moment diagram of the conjugate frame due to the load Fx = — 1 at B.
Finally, the influence line for the shear Rz produced at the section B of the
space loaded frame by transverse loads Fz is found as the bending moment
diagram of the conjugate frame due to the couple Cz= — 1 at B.

4. Analogy between kinematics of plane loaded and statics of space
loaded frames. For a plane loaded frame the displacements uZ} 0X, 6y vanish
and the distortions Gz, gz, Hx, hXl Hy, hy are zero. For a space loaded frame
the loads FXl fx, Fy, fy, Cz, ct and the stress resultants Rx, Ry, Mt vanish. The
remaining equations (2) for the members of the plane loaded frame then are
found to correspond exactly to the remaining equations (1) for the members
of the space loaded frame according to Table III.

The relations between the displacements of the plane loaded frame at both
sides of the angle joint of Fig. 3 are easily seen to correspond to the relations
between the stress resultants of the space loaded frame. Furthermore, the
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correspondence between the various types of supports and links shown in
Table II is valid also in the present case where we are concerned with the
kinematics of the plane loaded frame and the statics of the space loaded
frame.

Table III

Kinematics of Plane Loaded Frame Statics of Space Loaded Frame

Displacements ux, u„, 6Z
 Gxt —Gy,  Hg

,-gi. ~gy, ~hz
Distortions

Stress resultants Mx, My, R,
\ Cx, Cy, FzLoads
Cx, Cy, fz

The analogy established in this section can
If be used to find the stress resultants of a stat-
1 ically determinate space loaded frame by
I determining the displacements of the con-

jugate plane loaded frame. Let us consider
for instance the frame in Fig. 5 carrying a

? transverse load FZ = P at B. The stress result-
ants produced by this load can be found as the
displacements of the conj ugate frame produced
by the bend Hz = — P at B. The general trend
of these displacements is shown in Fig. 7. Rel-

Fig- 7- ative to the right hand support, we obtain for
the transverse displacement at B:uy = 4a<p/3.

Relative to the left hand support, we have for the transverse displacement
at the same point: uy = 2a(P — <p)/3. By equating these expressions and
solving for <p, we find that <p = P/3. The displacements ux, uv, 6Z of the con-
jugate frame are thus known. They correspond to the stress resultants
Mx, My, Rz of the space loaded frame, the distribution of which is shown in
Figs. 8 a-c.

Pa/3

K

Pa/3

Pb/3 cPa/3

Fig. 8a-c.

5. Elastic deformations of space loaded frames. Indeterminate space
loaded frames. When the stress resultants of a space loaded frame have been
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determined by the method given in the preceding section, the analogy of §3
can be used in order to find the elastic deformations of the space loaded frame.
For example, let us consider again the frame in Fig. 5, carrying a transverse
load F, =P at B. The stress resultants have been determined in the preceding
section and are shown in Fig. 8. Equations (3) furnish the distortions pro-
duced by these stress resultants: hx = Mx/j3x, hy = A'fy/(3y, gz = Rz/az. According
to the analogy of §3, the displacements 6X, dy, uz corresponding to these
distortions can be found as the stress resultants Rx, Ry, Mz of the conjugate
frame carrying the loads fx= —hx,fy= —hv, cz= —gz. In most cases the influ-
ences of the shear Rz on the deformations can be neglected, and consequently
in the conjugate frame the distributed couples cz need not be considered. The
loads on the conjugate frame then consist of the axial loads shown in Fig. 9a
and the transverse loads shown in Fig. 9b, it having been assumed that (3X
and I3y have the same values for all members. The reactions can be computed
easily and are indicated in Figs. 9a and 9b. If now, for instance, we wish to
determine the deflection uz of the right hand corner C of the space loaded
frame, we have only to compute the bending moment Mz at the corresponding
corner of the conjugate frame. We find that

Pa3 r
uz — [23 - 18w3 + 54y»], (6)

162 /?„
where n=b/a and y =(3y/(ix.

This method of computing elastic deformations enables us to carry out
the stress analysis of indeterminate space loaded frames. Let us suppose, for
instance, that the frame in Fig. 5 is given a further simple support at B and
carries a transverse load Fz = Q at C. By establishing the condition for vanish-

n.rb

•qb

ra/S

ra-— g X ^—ra/2
-4r/3

At"* 4t-u, jkr~u2
qa qa 'v, Vz

Fig. 9a. q = Pa/301. Fig. 9b. n=b/a, r = Pa/3Py,
ra ra

U\ = —— (40 + 18»»), Ui = ■— (32 - 18«3).54 54
ra ra

V, = — (23 + 27«*) V2 = — (23 - 27»»).
54 n 54 n
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ing deflection at B and applying Maxwell's law of reciprocal deflections in
the usual way, we find the reaction at B in the form R = —Quc/ub, where
ub and uc denote the deflections which a unit transverse load Fz = 1 at B
produces at the points B and C respectively; uc can be obtained from (6) by
setting P= 1; ub can be computed as the bending moment Mz at the point
B of the conjugate frame, loaded according to Figs. 9a and 9b. With P = 1
we find that

uB =   [32 + 18n3 + 547wl
243ft,

and therefore

B

3(23 - 18m3 + 54yn)
~ 2(32 + 18m3 + 547w) '

6. The inverse column analogy. The following method of determining the
stress resultants of indeterminate space loaded frames is patterned after

the column analogy method of H. Cross.3 In
^ ^ - order to avoid lengthy computations which

might obscure the essential feature of this new
method, we shall consider the simple problem
of the frame in Fig. 10 carrying a transverse
load FZ = P at B.

We suppose again that the stiffness factors fix
and /3y have the same values for all members.
The frame then is symmetrical and is loaded

Syy symmetrically.
v According to the analogy of §4, the torque

Fig 1Q Mx and the bending moment My of the frame
can be obtained as the displacements ux and uy

of the conjugate frame produced by the bend Hz = — P at B. Now the conju-
gate frame is entirely free. Since the system is symmetrical, it will possess a
kinematically indeterminate displacement v in the direction of the columns as
shown in Fig. 11a. This indeterminate displacement in the plane loaded frame
corresponds to the statically indeterminate torque in the columns of the space
loaded frame.

From equations (2) we see that the distortions of the space loaded frame
are given by hx — MX/(3X, hy = My/(3y, or, by the analogy of §4, by hx = ux/(Sx,
hy = uy/Pv, where ux and uy are the displacements in the conjugate plane
loaded frame. The analogy of §3 then indicates that the longitudinal and
transverse loads on the conjugate frame are given by/* = —ux/(3x, /„= —uy/pv.

V yA

3 H. Cross, The column analogy, Univ. Illinois Engineering Experiment Station, Bull.
No. 215, 1930.
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The horizontal load is in equilibrium because of symmetry. The vertical load
is shown in Fig. lib, and is in equilibrium if

Pb n
v =

4 n + 7

where n = b/a, y =/3„//3x. Thus the torque Mx in the left hand column is given
by Mx = ux=v. Also, the bending moment My at B is given by

Pb 2y + n
My = - (» - Pb/2) =    — 

4 y + »

The procedure outlined above is equivalent to the following procedure.
We suppose that the conjugate frame is embedded in an elastic jelly which

,Pb/2

Pa/2!

Fig. 11a. Fig. lib. n=b/a, r=Pa/2py.

offers resistance to the displacement of the frame in such a way that an ele-
ment ds with displacements ux and uy will meet with a resistance consisting
of longitudinal and transverse forces of magnitudes Uxds/f3x and uvdy/f3v, re-
spectively. We then determine the displacements of this elastically supported
frame, and the longitudinal displacement ux then gives the torque Mx in
the space loaded frame, while the transverse displacement uv gives the bend-
ing moment My. The above method of procedure is clearly seen to be the
counterpart of the column analogy of H. Cross; it will be called the inverse
column analogy.

The inverse column analogy furnishes a simple method of determining
the influence lines of an indeterminate space loaded frame. For example, let
us consider the influence line for the bending moment My which transverse
loads Fz produce at the section B of the symmetric frame in Fig. 10. Following
the line of approach of §3, we consider the conjugate frame loaded by a
transverse force Fv= — 1 at B and supported elastically in accordance with the
inverse column analogy. Since this frame is symmetrical and loaded sym-
metrically, the displacements are of the type indicated in Fig. 12a. The forces
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which the elastic support exerts on the frame are shown in Fig. 12b. From
the condition of equilibrium for the vertical forces, we find that

J

v/p. V/p,

Fig. 12a. Fig. 12b. Fig. 12c. s—vab/Px+vW/Pv.

Pv n
v — 1

2b » + 7

where again n=b/a and 7=/3k//3i. The bending moment diagram of this elas-
tically supported frame (Fig. 12c) is at the same time the desired influence
line of the space loaded frame.


