
A NEW DERIVATION OF MUNK'S FORMULAE*
By W. C. RANDELS1 (University of Oklahoma)

Recently M. A. Biot2 has applied the method of the acceleration po-
tential to some problems of two-dimensional airfoil theory. In this paper this
method will be used in order to obtain a short proof of Munk's formulae3
for the lift and moment of a thin airfoil.

As usual in the theory of thin wing sections we replace the airfoil by its
mean camber line supposed to deviate but little from the chord. Studying the
plane irrotational flow of an incompressible fluid around this indefinitely thin
airfoil, we take its chord as the x-axis of a system of rectangular coordinates
x, y, ascribing to the leading and trailing edge the abscissae — 1 and +1 re-
spectively. Denoting by V the velocity at infinity and by a the angle of at-
tack, supposed to be small, we write the x- and y-components of the velocity
vector w as F+m and aV+v respectively, where u, v and aV will be small
as compared with V. We denote the pressure by p and the density by p.
Then, by Bernoulli's equation

P
— w2 + p — pa = const.

Neglecting quantities of the second order, we have

p(F2 + 2uV) = - 2(p - Po). (1)

The quantity <£= — 1 /p(p—po) is called the acceleration potential, since the
acceleration equals grad $.

It is known that V-\-u—i(aV-\-v) is an analytic function of z—x-\-iy.
Since V is a constant (sF2+wF)— i{aViJrvV) is also an analytic function
of 0. The functions $ = (|F2+wF), ^ = -(aF+sF) are thus seen to be con-
jugate harmonic functions.

Let the mean camber line of the airfoil be given by the equation y=c(x),
( — lgtfiSl; c(l) =c( — 1) =0). The condition that this be part of a stream
line furnishes the condition

aV -f- v
    c'(x) along y = c(x), (- 1 ^ x g 1).
V + u
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Neglecting quantities which are small of a higher order than the first, we
obtain

^ = — FV(x) along y = c(x), (— 1 ^ x ^ 1). (2)

Since v vanishes at infinity we have

00) = — aF2.

As the mean camber line deviates but little from the segment — 1
of the x-axis, we will not commit an appreciable error by fulfilling the condi-
tion (2) along this segment rather than along the mean camber line. We set

^ = — aV2 + + ^2

where

= «F2 and = — W(x) along — 1 ^ x ^ 1, y = 0

and

^(oo) = ^(oo) = 0.

and the conjugate harmonic function have been determined by Biot.
From <f>i the lift distribution due to the angle of attack can be obtained. In
the following we shall set a = 0 and thus obtain the lift distribution due to
the curvature of the mean camber line. Within the framework of our linear
theory these two influences are additive.

In order to solve the boundary value problem for we map the exterior
of the segment of the real axis between z = — 1 and z = +1 onto the exterior
of the unit circle in the £" plane by the conformal transformation

3 = i/2(f + i/r).
The line segment ( —1, 1) then is transformed into the circumference of the
unit circle and we have x=cos 6 (Fig. 1). Since a conformal transformation
takes a harmonic function into a harmonic function, our problem becomes
that of finding a harmonic function having the values — FV(cos 6) on the
unit circle. If we assume ^ to be regular on the boundary, the solution is
given by the Poisson integral but the resulting function will not vanish at
infinity unless

1 r2x
ao = — I c'(cos 6)dd = 0.

2ir J o

Therefore, to satisfy the condition Sf^oo) =0 we introduce a singularity cor-
responding to a source-sink doublet at the leading edge.4 With the notations
of Fig. 1, we obtain

• 4 It is natural to assume a singularity at the leading edge since our assumption about u
and v being small does not hold here.
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cos 6i 1 rlTT _ r2 — 1
^(r, 6) — — 2a0V2 Vi I [c'(cosr) — a0] dr.

r\ 2ir Jo r2 + 1 — 2r cos (t — B)

This function clearly vanishes at infinity and will satisfy the other boundary
condition because

cos 0i 1
 = — on the unit circle.

ri ?

Fig. 1.

The Poisson integral used above is only legitimate if

/» 2t /% 1 I c'(x) I
, lC'(C°ST'l "r-2J.l [! - <

This implies a condition on the rapidity with which c(x) tends to zero as x
tends to + 1.

The values of the conjugate function 9) on the boundary of the unit
circle are given by the formula6

sin 6i 1 C *2x t — 6
$(1, 6) = — 2a0V2 1 I c'(cos r) cot dr,

r\ 2ir J o 2

where /* denotes the Cauchy principal value. The total lift L will be given by

s J. D. Tamarkin, "Theory of Fourier series," Brown University, 1933, p. 110.
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/» 2ir *(i,
0

6) sin ddd

/'2x sin 61  sin ddd
a r i

y2 2t * 2t ^ ^

+   I sin WO I c'(cos r) cot <fr.
2 ir i/ o v o 2

It is easy to calculate:

/' 2t sin di sin ddd = 7r.
o »"i

The second integral is evaluated by making a formal interchange of the order
of integration. This interchange can be easily justified. We then have:

1 r 2t r**T t — d
— I sin ddd I c'(cos t) cot dr
2t */ o 2

f 2* l „*iT T _(
= I c'(cos r)dr— I sin 0 cot-

«/ o 2ir J o

and since the function conjugate to sin 0 is —cos

1 r*
2tt J o

Using this together with the definition of do we obtain the lift

L = — pF2 J" c'(cos r)dr + J" c'(COS r) cos rdr J

• dd

'*2* (t - d)
sin d cot dd = — cos r.

2t J o 2

1 1 + x
= — 2pF2 I c'(a;) -= -—rfx

J_i [1 — x2]1'2

r 1 + X 1 r1 1 + X
= — 2pF2<e(a;) 7 —— — ) c(x)    —dx

I [1 — X2]1'2 [1 - *2]3'2

/l dxc(x)   : r—
_x n - - -k21i/2(1 — *) [1 — x2]1

We have assumed that c(x) is such that Iim^i (c(x)(l — x)-1/2 = 0. The under-
lined expression is Munk's formula for the total lift, due to the curvature of
the wing.
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A similar procedure furnishes the moment M of the lift. It is given by
/% 2t

M = p ( $(1,0) cos 0 sin Odd

Then

and

so that

/» L 7T

3>(1, 0) cos 0 sir
or

J 0

pV r2* r*2T t - 0
+   I cos 0 sin Odd I c'(cos r) cot dr.

2ir o o 2

'2t sin 0i
- — 2pV2a0 I  cos 6 sin

pF2

fJ o

TT
cos 6 sin Odd — ;

r i 2

1 r2* r*2* t-9
— I cos 9 sin ddd I c'(cos r) cot dr
>.tJ o Jo 2

1 r21
= I c'(cos t) COS 2rrfr

2 J o

r 1 r2r 1 r2r
M = — pF2 I c'(cos r)rfr H I c'(cos r) cos 2t<2t

L 2 o 2 «/ o

/*1 a:2 — 1
= — 2pF2 I c'(a;) -7 -— dx

J_! [1 — Z2]1'2

xdx
= 2PF2 '

c2]l/2

which is Munk's formula for the moment, due to the curvature of the wing.6

6 After the manuscript of this paper had been completed (August 1942), H. J. Stewart
has published an analysis proceeding along similar lines: A simplified two-dimensional theory
of thin airfoils, Journal of the Aeronautical Sciences 9, 452—456 (Oct. 1942).


