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ON THE MOTION OF A PENDULUM IN A
TURBULENT FLUID*

BY

C. C. LIN
Guggenheim Laboratory, California Institute of Technology

1. Introduction. In a recent paper, Schumann! has investigated the mo-
tion of a damped pendulum in a turbulent fluid by considering the effect of
the fluid as a continuous fluctuating force. He first considers a damped
pendulum which is bombarded by pellets of equal mass mh at equal intervals
h of the time, and then treats the case of continuous fluctuations by a limiting
process. For this latter case, which “must be regarded as being of far more
practical importance,” Schumann obtains the very interesting result:?
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2/ R(x)e= sin (Bx+v)dx
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The notation is as follows:

()= [ [ RGO+ RE=0) e sin gxtr)i

r(£) =correlation function of the displacements of the pendulum at two
instants separated by a time interval &;
R(£) =limiting correlation function of the wvelocities of the impinging

pellets;

A=Il+m/M, M being the mass of the pendulum and ! its damping
factor;

B2=a?+12—N\?, 2r/a being the (damped) period of the pendulum;
sin ¥ =8/B1;

B=f4N=at2,

The analysis used by Schumann is very elegant, but somewhat lengthy.
In this article, we shall study the problem from another point of view, and
give an alternative derivation of (1.1). This derivation, though unable to
cover the case of discontinuous impacts, seems to show the nature of that
relation much more clearly.

2. Damped pendulum under the action of a fluctuating force. We shall
now investigate the correlation of displacement of a damped pendulum in
relation to that of the exciting force. The notation used in this section should
first be regarded as having different (though analogous) interpretations from

* Received Dec. 4, 1942.

! Schumann, T. E. W,, Phil. Mag. (7), 33, 138-150 (1942).
? Loc. cit., eq. (57), p. 146.
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those used in §1. The identification of the two systems of notation will be
made in §3.
Consider the equation of motion of the pendulum

2

D a2y p (2.1)
ar dt 4 ' '

where y is the displacement, A is the damping factor and 2w/ is the (damped)
period of the pendulum, P is the exciting force per unit mass of the pendulum,
and ¢ is the time. If the force P is quasi-periodic, and is given by the real
part of

P =) Aeion, (2.2)

where w, and 4, are real and complex constants respectively, the steady-
state displacement of the frequency w,/2r is given by the real part of
Aa

(B2 + A2 — @) + 20wy

(2.3)

Yn = a,e*nt, An =

Thus, we have

| 4.7

| anl? = -
(B2 + 22 — w3)? + AN

This is the relation between the spectrum of the displacement and that of

the force in the case of discrete spectra. It is not difficult to generalize this

result to the case of continuous spectra by the considerations of generalized
harmonic analysis.? We have then

flw) =4

(2.4)

F(w)

(2.5)

where f(w) and F(w) are the spectra of the displacement and the force re-
spectively,

fo "o = 1, fo Flo)de = 1, (2.6)

and 4 is a constant of normalization,

1 ) F(w)dw
1 f . 2.7
A ° (Bz 4+ A2 — w2)2 + 4202

These are the well-known relations in the phenomena of resonance.

The correlations 7(£) and R(£) of the displacement and the force respec-
tively stand in Fourier transform relations to the spectrat (apart from con-
ventional numerical factors):

3 Wiener, N., “The Fourier Integral” (Cambridge, 1933), p. 150.
4 Wiener, N., loc. cit., eq. (21.21), p. 161, and discussions on p. 163. To be exact, we
should follow Wiener in calling f(w) and F(w) the spectral densities.
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2 ] 0
flw) = —f r(x) cos wx dx, r(§) = f f(w) cos wt dw; (2.8)
™ 0 0
2 -] -]
F(w) = —f R(x) cos wx dx, R(§) = f F(w) cos wtdw. (2.9)
™ 0 0

From (2.5), (2.8), and (2.9), we have at once

) = 24 ® cos widw f‘”R( ) i (2.10)
r(¢) = ). G eyt v, x) cos wx dx. .

It is not difficult to justify a change of the order of integration, since the cor-
relation functions are expected to go to zero at infinity sufficiently rapidly.
The above relation then becomes

()_ZA f“R( )d f°° cos wé cos wx J .11
A S R I I P OF R '

Since we have
cos wt cos wx = 3{cos w(t + x) + cos w(t — x)}, (2.12)

we can evaluate the integral with respect to £ in (2.11), if we know

10) = f ) c0s wf d 2.13
- o (B2 4+ A2 — w?)? 4+ 4022 - (2.13)

This integral is relatively easy to evaluate. We write

1 0 wt
1) = — ¢ do, (2.14)
2 o (BZ + x? — w2)2 + 4X2w2

and consider the corresponding contour integral in the complex w-plane, the
contour being the usual one composed of the real axis and a semi-circle at
infinity. The circle is taken in the upper half-plane if £>0, and in the lower
half-plane if ¢<0. Since (2.13) shows that I(¢) is an even function, we shall
carry out the calculations for ¢ >0 alone.

There is no difficulty in showing that the integral over the semi-circle
goes to zero. For, when the imaginary part of wt is positive, e"""| is bounded,
and [ (B2+)\2—w2)2'+4)\2w2] =0(|w| 4) for large values of ]w . The evaluation
of (2.14) then reduces to the calculation of the residues of the integrand at the
two simple poles + B4\ (A >0) inside the contour. The result can be easily
verified to be
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—\t

) == — sin (81 + ), (2.15)

where

. B
sm'y=(62+—)\2)m- (216)

With the help of (2.12), (2.13), and (2.15), the equation (2.11) becomes

r() = i[fm{R(x + 8 + R(x — H}e sin (Bx + 7)dx
48\

+f {R(t — 2) — R(x — £ }e>=sin (Bx + ')’)dx:l. (2.17)
0

This is Schumann’s relation (1.1), if the constants can be identified. There
is no difficulty with the normalization coefficient. We have

43)\
—_—= f R(x)e‘” sin (Bx + vy)dx

* F(w)dw
= 48\ ; (2.18)
0 (62 + )\2 —_ w2)2 + 4)\2‘02
on putting £=0 in (2.17) and recalling (2.7). The second relation is a by-
product of our investigation. The limiting case A—0 reduces to the well-
known relation (2.9).

Referring to (2.9), we see that R(£) is an even function of £, so that the
second integral in (2.17) may be dropped.

From the derivation, we see that (2.17) is nothing but the Fourier trans-
form of the well-known resonance relation (2.5).

3. Identification of the results. We shall now identify Schumann'’s result
with ours by showing that in the limiting case, his pendulum has an effective
damping factor X instead of /, and that his correlation of velocity of the pellets
becomes the correlation of force. The equations of motion as given by Schu-
mann are®

M — mh 2mh
n, = u! + Uy, 3.1)
M+ mh M+ mh
at the rth impact at the instant ¢ =7k, and’
d2
W+21—+(a2+l2)y—0 (3.2)

5 Loc. cit., egs. (1), (2). It seems that there are some misprints in the original paper.
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between successive impacts. In (3.1), %, and #, denote respectively the veloci-
ties of the mass M just before and just after the #th impact, and v, is the veloc-
ity of the rth pellet.

In the limiting case, the discrete impacts become a continuous force given
by

u!
— M = — 2mu + 2mpy, (3.3)
-0 h

Ur

Pl = lim
where # and v are the limiting values for «, and v, at the instant ¢ =7k. Thus u
is evidently the velocity of the pendulum dy/d¢, and v is the velocity of the
infinitesimal impinging pellet in the interval (¢, {+d¢). The cquation of motion
(3.2) then becomes
ﬂy—+2l§2’+(a2+l2)y=i<— 2m 9’+ 2mv> (3.4)
dr dt M dt ' '
We see that this limiting case carries an inherent damping factor m/M in
addition to the damping factor I. The term 2mv/M is evidently the exciting
force per unit mass, since m is the impinging mass per second, the factor 2
corresponding to the fact that when the impinging mass is infinitesimal com-
pared with the colliding mass, the former rebounds with the colliding speed,—
a fact often used in the kinetic theory of gases.

The identification of Schumann’s result with that given in §2 is therefore
complete.

4. Discussion. In view of the above derivation, we must be a little careful
in applying Schumann’s relation (1.1) to the study of the motion of a pendu-
lum in a turbulent fluid. The correlation function R obtained (by suitable
processes) according to that relation from the correlation function 7 of the
displacements is that for the hydrodynamic force (the part corresponding to
an extra damping being removed). In a turbulent fluid, the connection be-
tween the velocity fluctuations of the fluid before the introduction of a pendu-
lum and the fluctuating force acting upon the pendulum after its introduction
is not at once evident. A preliminary careful investigation seems to be neces-
sary before the method suggested by Schumann could be used with advantage.

It is also clear that the spectrum of velocity fluctuations of the pendulum
will be proportional to w?f(w). It is then clear from (2.8) that the correlation
function of the velocity fluctuations will be proportional to —r’/(§).

There is another point which should be mentioned. The spectrum and
correlation function discussed above refer to those observed at a fixed spatial
point, if we assume the pendulum to be never far from its position of equi-
librium. It is not difficult to observe this spectrum with a hot-wire anemome-
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ter, as has been done by several observers.® The Fourier transform of this
spectrum will then give the correlation of the fluctuations at successive in-
stants at the same point in space. It is not clear, however, how (as Schumann
suggested) the pendulum can be used to observe the correlation function de-
fined with respect to the same material point,—the quantity introduced by
Taylor” in the Lagrangian description of turbulence for the study of the
phenomenon of turbulent diffusion.?

In conclusion, the author wishes to express his sincere thanks to Professor
Theodore von Kirmaén for suggesting the problem to him and for his invalu-
able suggestions.

6 For example, L. F. G. Simmons and C. Salter, Proc. Roy. Soc. Ser. A, 165, 73-89 (1938);
H. L. Dryden, Proceedings of the Fifth International Congress of Applied Mechanics (Cam-
bridge, Mass., 1938), pp. 362-367; H. Motzfeld, Zeits. f. angew. Math. u. Mech. 18, 362-365
(1938).

7 Taylor, G. 1., Proc. Lond. Math. Soc., (2), 20, 196-212, (1921). Clearer statements re-
garding this point are made in his paper of 1935, Proc. Roy. Soc., A, 151, 421478 (1935).

8 A discussion of the three types of correlations that may be defined in the study of iso-
tropic turbulence has been made by G. Dedebant and P. Wehrle, Comptes Rendus 208, 625-
628 (1939).



