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A DIRECT IMAGE ERROR THEORY*
M. HERZBERGER

Communication No. 894 from the Kodak Research Laboratories

1. In a previous paper1 the author proposed a direct approach to the prob-
lem of geometrical optics. In this paper we shall give a new image error theory,
to the fifth order, which seems to be more adapted to the practical problems
than former theories. We are given a rotationally symmetric system. Let us
choose two Cartesian systems, one in object space and the other in image
space, such that the x, x' and y, y' axes have the same directions and the z, z'
axes coincide with the optical axis of the system.

A ray is given in object (image) space by the coordinates x, y, (x\ y') of
its intersection point with the plane z = 0, (z' = 0). The optical direction
cosines (the direction cosines multiplied by the refractive indices n and n',
respectively) may be designated by the Greek letters

f, v, r = v«2 - «2 + v2); r, v', r = v«'2 - w + v2).
The fundamental problem of practical optics is to find x', y', £', jj', when

x, y, £, t) are given. Because of the rotational symmetry, four functions,
A,B, C,D, exist such that,

x' = Ax+Bt, r = C* + Z>£,
y' = Ay + Bi), t]' = Cy + Dr\.

where A, B, C, D depend only on the three symmetric functions U\, u% U3 of
our coordinates:

= i(*2 + y2), «2 = x£ + yn, u3 = Kf2 + V2)- (2)

We found in the previous paper1 that, according to the laws of geometrical
optics, A, B, C, D cannot be arbitrary functions, but must fulfill one finite
and three differential equations, viz.,

AD - BC = 1
and

'\ / 8A SB \ (dA dC dA dC\-) - c( ) + 2uA )
1/ \dll2 dui/ \dtli dtli 3«2 dui/

/dA 3D dA dD dB dC dB dC\
+ «2 (   H )

\du 1 du2 6112 du 1 dui du2 3w2 dui/

(dB dD dB dD\+ 2 uJ ) = 0,
\dll 1 dui dui du\/

* Received Nov. 26, 1943.
1 M. Herzberger, Direct methods in geometrical optics, Trans. Amer. Math. Soc., 53, 218

(1943).
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^ / dC dD \ ^ / dC dD \ tbA dB\
\du3 dui) \du2 dUiJ \du3 Qui)

(dA dB\ (dA dC dA dC\
- D( ) + 2uA )

\du2 dui/ \dui du3 duz du\)

(dA dD dA dD dB dC dB dC\
+ «2 (  1 )

\d«i du3 du3 du\ du\ dus du% du\j

(dB dD dB dD\
+ 2u3 I —— — ) = 0,

\o«i duz du3 du\J

(dC dD\ (dA dB\ (
B[ ) - D[ ) + 2uA

\du3 dui/ \du3 dui) \

\J ~ "■

(A)dA dC dA dC\
dui du3 du3 dui)

/dA dD dA dD dB dC dB dC'
\du2 du3 du3 dui dui du3 du3 du2

It is the purpose of this paper to develop from formulae (A) the theory of
image errors. Developing A, B, C, D into a series with respect to u\, Ui, u3, we
can write

A = A0 ~t~ A\U\ -J- A 2U2 -f" A3U3
2 2 2

hi-AuU] -j- 2AnUiUi -(- A22^2 + • * • + A33U3), (3)

and for B, C, D, correspondingly. Inserting (3) in (A) and comparing coeffi-
cients leads to the first-order equation:

AgDo — B0C0 — 1; (4)

the third-order equations

A 0D1 + A\Dq = B0C1 + B1C0,

A0D2 -j- A2D0 = BqC<2 "I" B2C0, (5a)

A qD3 + A3D0 = BqC 3 + B3Ca\

and

A0(C2 - DO - Cq(A 2 - BO = 0,

A0(C3 - D2) + 5o(C2 - DO - C0(A3 - B2) - D$[A 2 - BO = 0, (5b)

^o(C3 - DO - Dq{A3 - BO = 0;
and finally the fifth-order equations:

* If we differentiate the finite equation above with respect to «i, «2, «3 and subtract from
each of the equations (7) of the former paper,1 equation (A) above results.



(6a)

(6b)
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AoDu + DqAh — -BoCn — Co-Bit = 2(BiCi — AiDi),
AoDu DqA 12 — BoCn — C0B12 = B\C2 -(- B2P1 — A\D2 — A2D1,

A0D13 -f- DqA 13 — BqC\z — CqB\3 = B1C3 B3C1 — A1D3 — A3D1,

A0D22 -f- DqA22 — B0C22 — C0B22 — 2(^B^p2 — AtD^),

A0D23 -f" DqA23 — B0C23 — C0B23 = B2P3 -f- B3C2 — ^2^3 — A3D2,

A qT)33 + DqA 33 — B0C33 — C0B33 = 2 (B3C3 — ^3^3)1
and

Ao(C2\ — D\i) — Co(A 21—-B11) =Ci(A 2 — Bi) —Ai(Cz — Di) — 2(A iC2—A^Pi),

A o(C22 — D12) — Co(A 22 — Bu) = C2(A 2 — -Bi) — A 2(02 — Di) — (^11P2—-<4 2^1)

— {B\C2— B2P1),

A0(C23-D13)-C0(A23-B13)=C3(A2-B1)-A3(C2-D1)-2(BlD2-B2D1),

Ao(C3i D2\) B q(C 2i — Dn) —Co(A3i~ B2i) —Dq(A 21 — Bu)

= -B1(C2-D0-Al(.C3-D2)+D1(A2-B1)+C1(A3-B2)-2(A1C3-A£1),

A o(C*32 D22) Bo(C22 — D12) —Co(A 32— B22) —Do(A22— -B12)

= — B2(C2—Di) —A2(C3-D2)-\-D2(A2—Bi)+C2(^3 — B2)

- (A 1DI -A3Dl)-(B1C3- B3C1),

A o(C*33 -^-^23) I Bo(,C23 D13) — Co(A 33 B23) —Do(A 23— B13)

= — B3(C2—D1) —A3(C3—D2) -\-D3(A 2 — B\)-^-C3{A3— B2) — 2{BiD3— B3D1),

Bq(C3i~ D2i) —Dq(A3i — -B21) = Di(A3 — B2) — -Bi(C3—D2) — 2(^4 2C3—^4 3C2),

Bo(C32 D22) Do{A 32 — -B22) =D 2(A 3 — B2) — B2{C3 — D2)
— (A 2D3—A 3D2) — (B2C3 — -B3C2),

Bo(C33 — D23) — D0(A 33 — B23) =D3{A 3 — B2) — £3(03 — D2) — 2(B2Z>3 — B3D2).

Moreover, the (6 + 9) equations (6) are not independent; they are con-
nected by the identity

[a o(C*32 D22) -f" -Bo(C*22 -^12) Cq(A 32 B22) ~Do(A 22 — -B12) ]

H~ \AoD22-)rDbA22 BqC22 C0B22] \A0Du-\-DnA\3— B0C13 —C0B13] (7)

— [Bo(C31 — Z?2i) — D0(A3i — B21)]— [A q(C23 Dl3*) Cq(A 23 B13) ] = 0.

2. Gaussian optics. Let us consider first the rays in the neighborhood of
the axis. Let us assume that u\, u2, u3 are so small that we can assume func-
tions A, B, C, D to be equal to their constant members:

x' = A0x + Bo?, £' = Cox + £>o£,
(8)

y = Aoy + B ov, v' — Co y + DoV,

where A0D0 — BoCo = 1.
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The evaluation of these equations and the investigation of the geometrical
meaning of the coefficients form the content of Gaussian optics.

We shall not go into great detail here, but refer the reader to the discus-
sion in the Journal of the Optical Society of America.2

Equations (8) can be inverted, and we obtain then

x = Dox' — Bq£', £ = — Cox' + A o£',

y = D0y' — Bov', v = — C0y' + A 0y'.

Let us investigate what happens if one of the coefficients vanishes.
^40 = 0 means that for £ = ?? = 0, x' =y' — 0, which means that the bundle

of rays parallel to the axis converges to the image origin. We say that the
image origin is at the focal point of the system.

Bo = 0 means that for x=y = 0, x'=y' = 0. The rays through the object
origin meet at the image origin. We say then that object and image origin are
optically conjugate.

Co = 0 means that £ = 77 = 0 implies £' = t]' = 0, or, a bundle of rays entering
the system parallel to the axis emerges parallel to the axis. The system is a
telescopic system.

D0 = 0 means that x =;y = 0 implies §' = t/' = 0. The rays through the object
origin emerge parallel to the axis. The object origin is the object-side (front)
focal point.

3. Image error functions. Let us for finite rays* project image point and
direction back into the object space, according to Gaussian optics. That
means we form equations (9) for our finite rays. The ensuing expressions may
be called the equivalent object coordinates x, y, y. We have from (9) and (1)

* = D0x' - B£ = (D0A - B0C)x + (D0B - Bd>)Z = ax + Jf,

f = - C0x' +A0¥= (- CoA + A0C)x + (- C0B + AJ))Z = cx +

and analogously,
y = ay + by,
y = cy + drj.

a, b, c, d are with A, B, C, D functions of u\, ut, u3, and we have

(n)
^0 — co — 0,

the values a0, b0, c0l do, being the limits of a, b, c, d for m< = 0. If Gaussian
optics were correct, we would have equation (11) for all values of w<, that is
for finite aperture and finite field. The deviation from its constant term as a

* M. Herzberger, On the fundamental optical invariant, the optical tetrality principle, and on
the new development of Gaussian optics based on this law, J. Opt. Soc. Amer. 25, 295-304 (1935).

* The expression finite is used in distinction from paraxial rays, rays near the axis.
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function of aperture and field is therefore a measure of the image errors. We
call a, b, c, d the error functions.

In the nomenclature of matrix algebra we can express these equations as
follows:

Let ra-o o-o-
(Im:) (;)-•<•(:) (12)

xo, yo, £o , Vo would be the coordinates of the image ray if Gaussian optics
were valid. Equations (12) combine equations (1) and (8), M being the matrix

(c Dan<^ ^0 ^e'n^ t'ie mat"x

We have then

where

m = Mo M, M = Mom. (13)

From (13) it is obvious that the determinant of m is equal to unity.
Therefore,

ad — be = 1. (14)

The reader can verify for himself that a, b, c, d fulfill equations (A) and
therefore equations (5) and (6), which simplify considerably, owing to the
fact that (11) is fulfilled.

Equations (13) can be written explicitly

a — DqA — JBqC, A = Ao& B0c,

b ~ DoB — B0D, B ~ A ob Bodt
c = — CoA -f- A0C, C Co# Doc,

d — — CoB -f- AoD, D — Cob "I- Dod.

(15)

Differentiation and substitution in (A) prove our statement.
4. Third-order theory. The third-order image errors are usually called

Seidel errors.
From our point of view, we obtain the image errors by inserting (11) into

(5). Abbreviating (da/dUk)Ui-o by au

di -f- di = 0 C2 = di

~f~ dt — 0 Ct = bi (16)
dz -f~ d$ — 0 ds = b2.



74 M. HERZBERGER [Vol. I, No. 1

Equations (16) lead to the conclusion that only six of these twelve coeffi-
cients are independent. Equations (16) are identically fulfilled by selecting
six parameters kik with permutable indices such that

fli = ^21 b i = kz\ c i = — ku d\ — kn*

02 — k%2 &2 = ks2 C2 — — k\2 (I2 ~ k%2 (1^)

= ^23 ^3 = ^33 C3 = — k\% d% =■ — k 23.

Geometrical investigation (which we omit) would show that (if object and
image planes are optically conjugated), k3$ may be interpreted as the coeffi-
cient of spherical aberration for the object origin; £23 as the coma coefficient;
£22 and ku as coefficients of the field errors; and kn as the coefficient of the
distortion for an object at the origin and an infinite entrance pupil.

On the other hand, k\\ may be considered as the coefficient of spherical
aberration for an infinite object; &12 as coma coefficient; ku and £22 as field
errors; and k23 as the coefficient of distortion for an infinite object and the
entrance pupil at the object origin.

The connections between these errors are well-known laws of the Seidel
theory.

The method developed here differs from the usual methods in that, first,
we do not assume the coordinate origins to be in conjugated planes, and, sec-
ond, we do not restrict ourselves to the consideration of the deviation of the
object point, but investigate at the same time the deviation of the direction
of the ray. Equations (10) give, within the limits of our Seidel region, the
following equations:

X X = (&2lWl "f" &22W2 -f" &23M3)# -f- (^31^1 -f- ki2U2 -(-
~ (18)

£ — £ = (kuUl + &12«2 + k\zUi)X + (k2\U\ + &22M2 + &23W3)£;

and y and 17 analogously.
We recommend a detailed study of these equations and their derivatives

with respect to x and £ for meridian rays (y = v = Q)< especially in the case
where our origins are not conjugated.

5. Fifth-order aberrations. For the fifth-order aberrations we find from
(6a) and (6b) the following fourteen independent equations between the
twenty-four coefficients alK, etc.

Making use of equations (11) and (17) we find that
2 2

#11 + ^11 = 2(&i2 ki\kiz)y #22~f~^22== 2(^22— ^12^23) >

#12 + ^12 = 2&12&22— ^12^13^11^23» #23 + ^23 = 2^22^23 ~~ ^13&23~~ ^12&33>
2 2

<*13 + ^13 = 2^12^23 ^13 £ll^33> #33 + ^33 = 2(&23— kizkzz) i
2 2

C2l~-d\i= 2^12+^11^13 — 3&ii&22> ^12 &13== ̂ 13 I ^13^22 2^i2^23» (19)

^22 d\2 — 2^12^13 ^12^22— ^11^23* ^22 — #23 == 2&13&23 ^12^33 ^22^23»
2 2

£23 d\z = ^13 + ^13^22 — 2^12^23* ^23— #33 = 2^23 + ^13^33 3^22^33»

^31 + ^11 = 3(^12^13— ^11^23)> £33+^13= 3(^13^23— ^12^33)'
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Here again, we can express the twenty-four quantities in terms of the
third-order coefficients and nine parameters klK\.

6. The single sphere and the plane. In our previous paper we were able
to calculate the functions A, B, C, D for the case of a plane and a sphere.

In the case of a plane, we put object and image origins at the point where
the axis intersects the plane and found that

x' = x, y' = y,
(20)

or ^4 =Z> = 1, B = C = 0. In this case we have a=d = 1, b—c = 0, and all the
image errors vanish.

In the case of a spherical surface, we put the object and image origins at
the center, and found that

where

x' = Ax, y' = Ay,

? = Cx + Z>{, r,' = Cy + Dr, (21)

2n"u\ — ui // 2 n2u, — u\/ 2 n2u, — u\
^—+v )(*2—)-cu»

(22)

1
A=— ■

D

If we develop A, B, C as functions of U\, u2, w3, we obtain the Seidel and
fifth-order coefficients. Taking care of (5) and observing that

n
Ao = —- > Bo = 0,

n

it' — n n'
Cg =  > Do = —j

r n

(23)

we finally find the image-error coefficients:

«i =

ii = 0, J, = 0, 63 = 0,

«4/ 1 4 4 1 \ n2 / 1 1 \ 2
Cl=" A~ ,7 « + ";)> c2- r( ~7 ) ' c3 = 0, (24a)

n2 ( 1 1 \2 1/1 1 \
1 = T\~T ) ' °2~ V ~7 )' «3 = 0,r* \n n / r \n n /

w4/ 1 4 4 1 \ n2 / i i V
r3 \«'3 «'2w n'n2~^ n3)' 2 r2 \»' «/ '

»2 / 1 1 y 1/1 1 \<*i — J, <f2 = f — ), ^3 = 0;
rl \n n / r W »/
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and the fifth-order coefficients:

an

a 12

n4/ 1 1\2/ 3 2 3 \
~*W~) ai3=0'

w2 / 1 1 \ / 2 3 2 \=TV"T )( 77—; I—2)' 3=0,
r1 \» n / \n2 nn «2/

1/1 1\2
a22~ — I— I, 133 — 0,

r1 \n n /

ill = &12 = ^22 — ^13 — b 23 = ^33 = 0,

3n6 ( 1 1 \ / 1 3 3 3 1 \
Cn — f JI 1— 1 J, r 13 = (),

r6 \n' n /\«'4 nnn n'2n2 n'n3 w4/

«4 / 1 1 \2 / 2 3 2 \

= -— (—■)(— 7-+—), CM=0,
r3 \n' n)\n'2 n'n n2)

«4/ 1 1\2

n2 ( 1 1 \ 1
d 12 = 1 I >

r3 \n' n /n'n

1/1 1\2
^22~TV~ j >

r2 \n n /

C12

£22

^23 — 0,

^33 = 0,

(24b)

equations which fulfill all the conditions of equations (6).
The nonvanishing seventh-order coefficients for one surface would be:

0111
3nW 1 1\!/ 5 6 10 6 5 \
r6 \»' n) \«'4 n'3n n'2n2 n'n3 «4/'

«4/ 1 1 \ / 8 19 25 19 8 \
f6 \n' n /\n'4 nnn n'2n2 n'n3 «4/'

w2 / 1 1 \2 / 3 2 3 \

r4 \m' n) \«'2 n'n n2)'

r2 \«' w /

3«8 / 1 1 \ / 5 17 26 33 26 17 5 \

r7 \«' n)\n'6 «'5w «'4«2 »'3«3 «'2w4 w'«6 M6/'

0112
r

p2
fll22

0222
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re6/1 1 \'Y 8 19 25 19 8\
r6 \«' n) \n'4 n'3n n'2n2 n'n3 n*/'

nWl l\/ 3 7 11 7 3 \
r6 \»' «/\ »'4 «'3« «'2«2 n'n3 «4/'

»' M

/ 1 1\2/ 1 2 2 2 1 \
\»' «/ \»'4 n'3n n'2n2 n'n3 n4)'

n4 / 1 1 \/ 1 1 1 \ 1
dn2= 1 11 1 1 J 1

r6 \n' n/\n'2 n'n n2) n'n

n2 ( \ 1\2/ 1 2 1\
rfi22 = — (— ) {—■H——4—"J,

r4 \n n / \ » 2 n n n2/

d„„±(>i.L'±]±.
r3 \«' [n A n'n

C122

3«2/ 1
C222= (

r X
3n«/ 1

dm— 
r

(25)


