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REDUCEDNESS OF AFFINE GRASSMANNIAN SLICES

IN TYPE A

JOEL KAMNITZER, DINAKAR MUTHIAH, ALEX WEEKES, AND ODED YACOBI

(Communicated by Alexander Braverman)

Abstract. We prove in type A a conjecture which describes the ideal of
transversal slices to spherical Schubert varieties in the affine Grassmannian.
As a corollary, we prove a modular description (due to Finkelberg-Mirković)
of the spherical Schubert varieties.

1. Introduction

1.1. The reducedness conjecture. Let G be a complex semisimple group and
consider the associated thick affine Grassmannian Gr = G((t−1))/G[t]. There is a
Poisson structure on G((t−1)) arising from the Manin triple

(g((t−1)), g[t], t−1g[[t−1]]).

Hence G[t] is a Poisson subgroup of G((t−1)), and this coinduces a Poisson structure
on Gr.

For a dominant coweight λ of G consider the G[t]-orbit given by Grλ = G[t]tλ.
Note that the thin affine Grassmannian G[t, t−1]/G[t] is isomorphic to the union⋃
Grλ over all dominant coweights.

Given a pair of dominant coweights such that μ ≤ λ we have that Grμ ⊂ Grλ.
Our main objects of interest are transversal slices to Grμ inside Grλ, which we
denote Grλμ. These slices arise in several contexts:

(1) By the Geometric Satake Correspondence, the intersection homology of Grλμ
can be identified with the associated graded of V (λ)μ, the μ weight space
of the irreducible LG module of highest weight λ [9],[5],[10].

(2) Grλμ is a conical Poisson subvariety of the affine Grassmannian with respect
to loop rotation [7].

(3) By recent work of Braverman, Finkelberg, and Nakajima [2], these slices
are the Coulomb branches of certain 3d N = 4 quiver qauge theories.

(4) Closely related to the previous item, the slices in the affine Grassmannian
are conjectured to be symplectic dual to corresponding Nakajima quiver
varieties [3].

The transversal slice is constructed as an intersection Grλμ = Grμ∩Grλ, where Grμ
is an orbit of the congruence subgroup of G[[t−1]] acting on Gr. The Reducedness
Conjecture describes the ideal of Grλμ inside Grμ. More precisely, in [7] a Poisson

ideal Jλ
μ ⊂ O(Grμ) is explicitly defined via generators and it is shown that the
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vanishing of this ideal is Grλμ. Let X λ
μ be the (possibly non-reduced) scheme whose

ideal is Jλ
μ .

Conjecture 1.1 (Conjecture 2.20, [7]). The ideal of Grλμ is Jλ
μ . Equivalently, Xλ

μ

is reduced.

Our aim is to prove this conjecture in type A:

Theorem 1.2. Let G = SLn. Then Conjecture 1.1 holds.

For G = SL2, SL3, along with some special cases for general n, this conjecture
is proved in [6]. We will show how the main result of [6] along with two additional
ingredients proves Theorem 1.2. These ingredients are a) Weyman’s description of
the ideals defining nilpotent orbits in sln, and b) an isomorphism motivated by [2]
between certain Xλ

μ for different n.

1.2. Consequences of the reducedness conjecture. Before describing the
proof of Theorem 1.2, we discuss some implications of Conjecture 1.1.

1.2.1. Truncated shifted Yangians. The main aim of [7] is to introduce a quantum
group, the so-called truncated shifted Yangian, in order to quantize the slice Grλμ.

The truncated shifted Yangian is defined in several steps. First, one constructs
the shifted Yangian Yμ, a C[�]-algebra which quantizes Grμ in the sense that

Yμ/�Yμ
∼= C[Grμ].

Next, one defines the GKLO representation Ψλ
μ : Yμ → Dλ

μ which depends also on

the parameter λ. The target space Dλ
μ is an algebra of difference operators.

Finally, one defines the truncated shifted Yangian to be image Im(Ψλ
μ) of the

shifted Yangian under the GKLO representation.
In [7] it is shown that the truncated shifted Yangian quantizes a scheme sup-

ported on Grλμ. Furthermore it is shown that Conjecture 1.1 implies that this scheme

is actually Grλμ. Recently, in [1, Appendix B], the latter statement was proven for
all simply-laced G by identifying the truncated shifted Yangian with the quantized
Coulomb branch A� of a 3d N = 4 quiver gauge theory.

By [7, Theorem 4.10], Conjecture 1.1 also implies that one can give a set of
explicit generators for the kernel of Ψλ

μ. We thereby obtain a presentation for
the truncated shifted Yangian, or equivalently for the quantized Coulomb branch.
Denoting this explicitly presented algebra by Y λ

μ , in general there is a diagram

(1.3)

Yμ

Y λ
μ Im(Ψλ

μ)
∼= A�

Theorem 1.2 implies that, in type A, the bottom row consists of isomorphisms.
We remark that in [8] the highest weight theory of the truncated shifted Yangian

is studied via the algebra Y λ
μ . Therefore Theorem 1.2 implies that the results in [8]

actually also hold for the algebra Im(Ψλ
μ).
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1.2.2. Modular description of spherical Schubert varieties. Another consequence of
Conjecture 1.1 is a modular description of the spherical Schubert varieties. We give
a brief indication of this connection; for a thorough discussion see Sections 1 and 2
of [6] (cf. also [12, Remark 2.1.7]).

The modular description of the thin affine Grassmannian (due to Beauville-
Laszlo) is as follows: Let X be a smooth curve, and x ∈ X a closed point. Then an
S–point of Gr consists of a pair (P, ϕ), where P is a principal G–bundle on S ×X,
and ϕ : P0|S×(X\x) → P|S×(X\x) is an isomorphism where P0 is the trivial bundle
on S ×X.

Finkelberg and Mirković propose a modular description of the spherical Schubert

varieties Grλ [4, Proposition 10.2]. They consider pairs (P, ϕ) as above, where the
pole of ϕ at x is controlled by λ (see [6, Section 2] for a precise description). While
this description is correct set-theoretically, it is not clear that the moduli space is
reduced.

Conjecture 1.1 together with [6, Proposition 5.1] implies this modular description

of Grλ is correct for G = SLn.

2. Definitions and overview

2.1. Definitions. We recall some notation and results from [6, 7]. We work
throughout over C.

Let G be a semisimple group, g its Lie algbera, and let I denote the nodes of the
Dynkin diagram of g. We write λ, μ, etc., for coweights of G and λ∨, μ∨, etc., for
weights of G. Let �i, �

∨
i (respectively αi, α

∨
i ) be the fundamental coweights and

fundamental weights of g (resp. simple coroots and simple roots of g). Let w0 be
the longest element of the Weyl group and set λ∗ = −w0λ,�i∗ = �∗

i , αi∗ = α∗
i . Let

(·, ·) be the Killing form g, and for coweights μ, λ write μ ≤ λ if λ− μ ∈
⊕

i Nαi.

Remark 2.1. In Sections 4 and 5.1 we will work with two semisimple groups si-
multaneously. When writing w0, λ

∗, etc., the relevant group will be clear from
context.

LetG((t−1)) (respectivelyG[t], G[[t−1]]) be the C((t−1)) points ofG (respectively
the C[t],C[[t−1]] points of G). Define also G1[[t

−1]] ⊂ G[[t−1]] as the kernel of the
evaluation G[[t−1]] → G, t �→ ∞. A coweight λ of G can be considered as a C((t−1))
point of G, and we let tλ denote its image in Gr. There is a corresponding orbit

Grλ = G[t]tλ, and spherical Schubert variety Grλ. Recall that Grμ ⊂ Grλ if and
only if μ ≤ λ.

Consider a pair of dominant coweights μ, λ such that μ ≤ λ. Define Grλμ =

Grμ ∩ Grλ, where
Grμ = G1[[t

−1]]tw0μ.

Grλμ is a transversal slice to Grμ in Grλ at the point tw0μ.
Let V be a representation of G and v ∈ V, β ∈ V ∗. We’ll introduce functions

Δ
(s)
β,v on G1[[t

−1]]. Let Δβ,v ∈ O(G) be the matrix coefficient: g �→ β(gv). Then

G1[[t
−1]] acts on V [[t−1]] and for g ∈ G1[[t

−1]] we have

Δβ,v(g) =
∑
s≥0

Δ
(s)
β,v(g)t

−s.

For instance, consider G = SLn and the representation
∧i

Cn (this case is suffi-
cient for our purposes). If we take v, β to be standard basis and dual basis elements,
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then Δβ,v(g) is an i× i minor of g, and Δ
(s)
β,v(g) extracts its t

−s coefficient. It will

be convenient for us to sometimes use the notation Δ
(s)
C,D to denote this function,

where the matrix minor is taken with respect to rows specified by C and columns
specified by D (here C,D ⊂ {1, ..., n} both have cardinality i).

We refer to [7, Section 2] for results concerning the Poisson structure on Gr.
We recall that G1[[t

−1]] is a Poisson algebraic group, Grμ is a Poisson homogenous
space, and Grλμ is a Poisson subvariety of Gr. The Poisson bracket on O(G1[[t

−1]])
is specified by the following equations:

{Δ(r+1)
β1,v1

,Δ
(s)
β2,v2

} − {Δ(r)
β1,v1

,Δ
(s+1)
β2,v2

} =
∑
a

(
Δ

(r)
Jaβ1,v1

Δ
(s)
Jaβ2,v2

−Δ
(r)
β1,Jav1

Δ
(s)
β2,Jav2

)
for all r, s ≥ 0, where {Ja}, {Ja} are dual bases of g with respect to (·, ·) (see
[7, Section 2.6]).

Let V (�∨
i ) be the irreducible representation of G of highest weight �∨

i . Fix a
highest weight vector vi ∈ V (�∨

i ) and a lowest weight dual vector v∗i ∈ V (�∨
i )

∗.
Write λ − μ =

∑
i miαi∗ (recall that μ ≤ λ, so all mi ≥ 0). O(Grμ) can be

canonically identified with the functions on G1[[t
−1]] invariant under the stabilizer

in G1[[t
−1]] of tw0μ. This is a Poisson subalgebra of O(G1[[t

−1]]). It can be shown

that the functions Δ
(s)
v∗
i ,vi

for i ∈ I and s > mi are invariant under this stabilizer

([7, Lemma 2.19]), and hence can be considered as functions on Grμ.
Now we can define the central objects appearing in Conjecture 1.1:

• let Jλ
μ ⊂ O(Grμ) be the Poisson ideal generated by Δ

(s)
v∗
i ,vi

for i ∈ I and

s > mi, and
• let X λ

μ = GX λ
μ be the corresponding subscheme of Gr.

Note that in [6] Xλ
μ is defined as the intersection Xλ∩Grμ, where Xλ is given by the

modular description of the orbit closures due to Finkelberg-Mirković. [6, Theorem

8.4] proves that the ideal of Xλ∩Grμ is Jλ
μ , and so here we take this as the definition.

2.2. Overview of proof. For the remainder of the paper, unless otherwise noted
we let G = SLn. The proof of Theorem 1.2 relies on the following three results.

Proposition 2.2. Suppose that λ ≤ n�1. Then X λ
0 is reduced.

Next let λ be an arbitrary coweight of G, such that λ ≥ μ = 0, and write it as a
sum of simple coroots and also of fundamental coweights:

λ =
∑

mjαj∗ =
∑

λj�j∗ .

Set k := m1 = 〈λ,�∨
n−1〉, and let τ be the standard inclusion of Dynkin diagrams

An−1 → Akn−1. Denote by τ also the map on coweights, which extends �i �→ �τ(i)

by linearity; for our chosen τ this is simply �i �→ �i.

Proposition 2.3. There is an isomorphism

(2.4) SLnX λ
0
∼= SLknX τ(λ)

k�n
.

Proposition 2.5 ([6, Theorem 1.6]). Let λ be a dominant coweight. If Xλ
0 is

reduced, then Xλ
μ is reduced for all μ ≤ λ.

Given these results, and a simple computation showing that τ (λ) ≤ kn�1

(Lemma 4.7(b)), the proof of Theorem 1.2 is immediate.
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It remains then only to prove the first two propositions. Proposition 2.2 will be
proved in Section 3, and Proposition 2.3 in Section 4. In Section 5.1 we discuss
how (2.4) is motivated by an isomorphism between affine Grassmannian slices that
follows from [2]. In Section 5.2 we prove that this isomorphism can be quantized
using truncated shifted Yangians.

3. Weyman’s equations

3.1. The nilpotent cone. Since Gr0 ∼= G1[[t
−1]] we can view Xn�1

0 as a subscheme
of G1[[t

−1]]. Let λ ≥ 0 be a dominant coweight of G and as above set λ =
∑

miαi∗ .
Recall the following (which holds for arbitrary semisimple groups):

Proposition 3.1 ([7, Proposition 2.15]). Jλ
0 is generated as an ordinary ideal by

Δ
(s)
β,v for s > mi, where i ∈ I and β, v range over bases for V (�i)

∗ and V (�i).

In the case when λ = n�1, then mi = i, and we have in particular that Jn�1
0

contains Δ
(s)
β,v, where s > 1 and β, v range over bases for V (�∨

1 )
∗ and V (�∨

1 ). It’s
easy to see that these elements are sufficient to generate the whole ideal. Therefore
we have

Xn�1
0 ⊂ In + t−1Matn,

where Matn denotes the affine space of n × n matrices. We use this to define an
embedding Xn�1

0 ↪→ Matn, by In + t−1X �→ X. The condition det(In + t−1X) = 1
implies that the image of this map is precisely N , the nilpotent cone of g. Therefore
we have an isomorphism of schemes Xn�1

0
∼= N . In particular, the Reducedness

Conjecture is true and we have Xn�1
0 = Grn�1

0 .

3.2. Nilpotent orbit closure. Let λ be a dominant coweight such that 0 < λ ≤
n�1. Recall that we have the expansions λ =

∑
λj�j∗ =

∑
miαi∗ . We form the

following partition, written in exponential notation:

v = 1λn−12λn−2 · · · (n− 1)λ1 .(3.2)

The condition 0 < λ ≤ n�1 implies that
∑

jλn−j = n, i.e., that v is a partition of
n.

Let u = vT be the conjugate partition. Because λ lies in the coroot lattice, we
can also expand:

Lemma 3.3. Let us write u = (u1 ≥ u2 ≥ · · · ≥ un−1). Then:

mn−i = u1 + · · ·+ ui − i.(3.4)

Using the partition u, let us consider the nilpotent orbit closure Ou ⊆ N , where
Ou denotes the orbit of nilpotent matrices whose Jordan form is given by u.

Proposition 3.5. The isomorphism Grn�1
0 = Xn�1

0
∼= N identifies Grλ0 with Ou.

Using results of Weyman [11], we will now see that under the identification
Xn�1

0
∼= N , the subscheme X λ

0 is equal to nilpotent orbit closure Ou with its
reduced induced scheme structure.
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3.3. Appearance of Weyman’s equations. Under the isomorphism Xn�1
0

∼= N ,
we can identify Xλ

0 as a subscheme of the nilpotent cone. More precisely, Xλ
0 is

identified with the subscheme of N given by the functions

{f (s)
C,D | 1 ≤ k < n, |C| = |D| = k, and s > mk},

where f
(s)
C,D(X) = Δ

(s)
C,D(In + t−1X). As functions on N , f

(s)
C,D is a sum of s × s

minors.
Note that the ideal of N as a subscheme of Matn is generated by (for each p)

the sum of all principal p× p minors.

Let Wk,p = span{f (p)
C,D | |C| = |D| = k}, and let U0,p be the one-dimensional

space spanned by the sum of all principal p×p minors. We then have that the ideal
of Xλ

0 in O(Matn) is generated by

(3.6)
⊕

k,p>mk

Wk,p ⊕
n⊕

p=1

U0,p.

Let Mp ⊂ O(Matn) be span of all p × p minors, and set E = Cn. We let GLn

act on O(Matn) by (g · f)(A) = f(g−1Ag). Under this action Mp
∼= ΛpE ⊗ ΛpE∗.

By the Pieri rule, we have:

Mp =
⊕

0≤k≤min (p,n−p)

Uk,p(3.7)

where Uk,p
∼= Sαk

E, the Schur module of highest weight αk = (1k, 0n−2k, (−1)k).
Note that in the case where k = 0 this notation agrees with the definition of U0,p

in (3.6).

It is clear that Wk,p is a subrepresentation of O(Matn). Moreover, each f
(p)
C,D is

a weight vector for the torus of diagonal matrices in GLn with weight:

wtf
(p)
C,D = −

∑
i∈C

εi +
∑
j∈D

εj .(3.8)

Suppose now that 0 ≤ k ≤ min (p, n− p), and set C0 = {k + 1, ..., n} and D0 =

{1, ..., n − k}. Then we have wtf
(p)
C0,D0

= αk. Furthermore f
(p)
C0,D0

is fixed by the
unipotent upper triangular matrices in GLn. Therefore, it generates a copy of
Sαk

E. Since Wn−k,p ⊂ Mp, by (3.7) we see that

(3.9) Uk,p ⊂ Wn−k,p.

We recall Weyman’s Theorem on nilpotent orbit closures, which by the above
lemma can be stated as follows:

Theorem 3.10 ([11, Theorem 4.6]). The ideal of Ou is generated by the following:⊕
1≤i≤n;p>mn−i

Ui,p ⊕
⊕

1≤p≤n

U0,p(3.11)

By equations (3.6) and (3.9), we see that Weyman’s Theorem implies that
I(Ou) ⊂ I(X λ

0 ). By [7, Corollary 2.16] V (Jλ
0 ) = Grλ0 and Grλ0 = Ou by Propo-

sition 3.5. Therefore these ideals have the same radical, and since I(Ou) is radical
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we obtain the following isomorphism of subschemes:

Proposition 3.12. Let λ be a dominant coweight for SLn with λ ≤ n�1, and let
u be the corresponding partition of n. Then we have

Xλ
0 = Ou(3.13)

as subschemes of n× n matrices.

This shows that Xλ
0 is reduced for any λ < n�1, proving Proposition 2.2.

4. An isomorphism of slices

4.1. Some varieties of interest. For the moment consider the general setting
where G is a semisimple group, and λ, μ are dominant coweights for G with λ ≥ μ.
In this case we denote λi = 〈λ∗, α∨

i 〉, μi = 〈μ∗, α∨
i 〉 and mi = 〈λ∗ − μ∗, �∨

i 〉.
As in [2, Appendix B], consider the subgroup

(4.1) Gμ :=
{
g ∈ G1[[t

−1]] : t−w0μgtw0μ ∈ G1[[t
−1]]

}
,

which has the property that there is an isomorphism Gμ
∼−→ Grμ defined by g �→

gtw0μ. Hence the translated subset

(4.2) Wμ := Gμ · tw0μ ⊂ G((t−1))

maps bijectively onto Grμ under the quotient map G((t−1)) → GrG. It is naturally
an affine scheme of infinite type.

Consider a closed subscheme Wλ
μ of Wμ, which is defined by imposing the fol-

lowing conditions on gtw0μ ∈ Wμ:

For every dominant weight τ∨ of G, the valuation of gtw0μ acting
on V (τ∨)((t−1)) is greater than or equal to 〈λ,w0τ

∨〉.
The above can be understood in terms of matrix coefficients, like in Section 2.

Note that in [6] X λ is defined by these same conditions on valuations, but applied
to a coset representative [h] ∈ Gr (i.e. with h in place of gtw0μ above). Since Wμ

provides a choice of coset representatives for Grμ, this implies:

Proposition 4.3. The quotient map G((t−1)) → GrG induces an isomorphism of
schemes Wλ

μ
∼= Xλ

μ .

Proof. This follows since Wλ
μ is the fibre product:

Wλ
μ X λ

Wμ GrG

where the bottom arrow comes from the quotient map G((t−1)) → GrG.
In other words, the definition of Wλ

μ is exactly a translation of the conditions

defining the scheme-theoretic intersection Grμ ∩X λ under the isomorphism Wμ →
Grμ. �



868 J. KAMNITZER, D. MUTHIAH, A. WEEKES, AND O. YACOBI

4.2. Explicit description of certain slices. We return to the case where G is a
special linear group. Fix a dominant SLn-coweight λ ≥ 0, and write λ =

∑
λi�i∗ =∑

miαi∗ . Set k = m1. Then λ ≤ kn�1, and this is the minimal value of k such
that this inequality holds.

As in Section 2.2, we consider SLn ⊂ SLkn corresponding to the inclusion τ of
Dynkin diagrams {1, . . . , n − 1} ⊂ {1, . . . , kn − 1}. Define a map τ taking SLn

coweights to SLkn coweights, which extends �i �→ �i by linearity.
Our goal is to explicitly describe an isomorphism:

(4.4) SLnX λ
0

∼= SLknX τ(λ)
k�n

.

Using Proposition 4.3, we will work exclusively with Wλ
μ . For simplicity, we will

abuse notation and continue to write Xλ
μ .

4.2.1. Case of SLn. Since SLnW0 = (SLn)1[[t
−1]] and 〈λ,w0�

∨
i 〉 = −mi, by

Proposition 4.3 we have that

(4.5) SLnX λ
0 =

{
g ∈ (SLn)1[[t

−1]] :
the valuation of any i× i minor

of g is ≥ −mi

}
.

Indeed, it suffices to consider only τ∨ = �∨
i the fundamental weights for SLn.

4.2.2. Case of SLkn. To describe SLknX τ(λ)
k�n

, it will be convenient to write elements
of SLkn as block matrices (

a b
c d

)
where a is (kn− n)× (kn− n), d is n× n, etc. With this convention, we have

tw0(k�n) =

(
t−1I 0
0 tk−1I

)
,

and following (4.1) and (4.2) we find that
(4.6)

SLknWk�n
=

⎧⎪⎪⎨
⎪⎪⎩
(

a b
c d

)
∈SLkn((t

−1)) :

a ∈ t−1I + t−2M(k−1)n×(k−1)n[[t
−1]],

b ∈ t−2M(k−1)n×n[[t
−1]],

c ∈ t−2Mn×(k−1)n[[t
−1]],

d ∈ tk−1I + tk−2Mn×n[[t
−1]].

⎫⎪⎪⎬
⎪⎪⎭

We can also describe τ (λ) more explicitly:

Lemma 4.7. We have:

(a) τ (λ) =
∑n−1

i=1 mn−iαi + k�n.
(b) τ (λ) ≤ kn�1.

Proof.

(a) Observe that τ (αi) = αi for 1 ≤ i ≤ n − 2, while τ (αn−1) = αn−1 + �n.
Since k = m1 is the coefficient of αn−1 in λ, the claim follows.

(b) The difference kn�1 − λ is a linear combination of α1, . . . , αn−2 with non-
negative coefficients: αn−1 does not appear. Since τ (αi) = αi for 1 ≤ i ≤
n− 2,

τ (kn�1 − λ) = kn�1 − τ (λ)

is also a linear combination of α1, . . . , αn−2 with non-negative coefficients.
�
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To apply Proposition 4.3 to SLknX τ(λ)
k�n

, we must compute the pairings 〈τ (λ),
w0�

∨
j 〉 for the fundamental weights �∨

j of SLkn. We do so by using Lemma 4.7(a),
together with the expansion

k�n =
n−1∑
j=1

j(k − 1)αj +
kn∑
j=n

(kn− j)αj .

Altogether, we find that SLknX τ(λ)
k�n

⊂SLkn Wk�n
is the closed subscheme defined

by the conditions
(4.8)

SLknX τ(λ)
k�n

=

⎧⎪⎪⎨
⎪⎪⎩
(

a b
c d

)
∈SLknWk�n

:

the valuation of any j × j minor is:
(a) ≥ −j, for 1 ≤ j ≤ kn− n,
(b) ≥ −mj−kn+n − (kn− j)(k − 1),
for j > kn− n.

⎫⎪⎪⎬
⎪⎪⎭

4.3. The isomorphism. We begin with the following observation regarding
SLknX τ(λ)

k�n
:

Lemma 4.9. The matrix coefficients of a− t−1I, b and c are zero in C[SLknX τ(λ)
k�n

].

Proof. The SLknX τ(λ)
k�n

conditions tell us in particular that the valuation of any 1×1

minor must be ≥ −1. Since a ∈ t−1I+t−2M(k−1)n×(k−1)n[[t
−1]], this 1×1 condition

is only satisfied if a = t−1I. Similarly for b, c. �

The next result establishes Proposition 2.3:

Proposition 4.10. There is an isomorphism of schemes

SLnX λ
0

∼−→ SLknX τ(λ)
k�n

defined by

g �→
(

t−1I 0

0 tk−1g

)
.

Proof. We will show that the SLnX λ
0 conditions on g imply the SLknX τ(λ)

k�n
conditions

on its image. The converse is similar.
Consider a j × j minor of the image of g. To be non-zero, it must correspond to

an i × i minor of tk−1g times a (j − i) × (j − i) minor of t−1I. In other words, if
non-zero, its valuation has the form

i(k − 1) + val(Δ)− (j − i) = val(Δ) + ki− j

where Δ is an i× i minor of g. By the SLnX λ
0 condition on val(Δ), this is greater

than or equal to

(4.11) −mi + ki− j.

We consider the cases j ≤ kn− n and j > kn− n separately, as in (4.8).
If j ≤ kn− n, then we must show that

−mi + ki− j ≥ −j.

Recalling that kn�1 ≥ λ, the above follows from the inequality

ki = 〈kn�1, �
∨
n−i〉 ≥ 〈λ,�∨

n−i〉 = mi.
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If j > kn− n, then we must show that

−mi + ki− j ≥ −mj−kn+n − (kn− j)(k − 1)

or equivalently

mi −mj−kn+n ≤ k
(
i− (j − kn+ n)

)
.

Note that j − i ≤ kn − n, so j − kn + n ≤ i. Since λ is dominant, it follows that
m�+1 −m� ≤ m1 for all 
 (e.g. if we think of λ = (p1 ≥ . . . ≥ pn) with

∑
pi = 0,

then pn−� = m� −m�+1 and pn = −m1). Since mi −mj−kn+n is a telescoping sum
of terms m�+1 −m�, and since m1 = k, the inequality follows.

In either case, we see that the SLknX τ(λ)
k�n

conditions hold on the image of g, as
claimed. �

5. Connection to quiver gauge theories

5.1. A general isomorphism between slices. We’ve now shown that Xλ
μ is

reduced in type A and hence is isomorphic to Grλμ. In particular Proposition 2.3
now says that we have an isomorphsm

SLnGrλ0 ∼= SLknGrτ(λ)k�n
.(5.1)

In this section we show that this isomorphism has a natural interpretation in the
context of Coulomb branches of quiver gauge theories, based on their description
by Braverman, Finkelberg and Nakajima [2].

We’ll work more generally, for G an arbitrary simply-laced semisimple group of
Dynkin type I. Consider λ ≥ μ dominant G-coweights, and as per usual we denote
λi = 〈λ, α∗

i 〉, mi = 〈λ−μ,�∗
i 〉. Consider the vector spaces Wi = Cλi and Vi = Cmi

for i ∈ I, and the group G :=
∏

i∈I GL(Vi). Fix an orientation Ω of the Dynkin
diagram I, and define

N :=
⊕

i→j∈Ω

Hom(Vi, Vj)⊕
⊕
i∈I

Hom(Wi, Vi),(5.2)

which is naturally a representation of G.
To this data there is an associated commutative algebra A = AG,N, which

is a graded Poisson algebra, arising as a special case of the general construction
[1, Section 3(iv)] (see also [2, Section 3(iii)]). Consider

MC := SpecA.(5.3)

This is proposed as a mathematical definition of the Coulomb branch associated to
a 3d N = 4 quiver gauge theory.

Theorem 5.4 ([2, Theorem 3.10]). For any dominant coweights λ ≥ μ there is an
isomorphism of Poisson varieties

Grλμ ∼= MC .(5.5)

Let τ : I ↪→ J be an inclusion of (simply-laced) Dynkin diagrams. For j ∈ J ,
consider the vector spaces

W̃j =

{
Wi, j = τ (i),
0, else

, Ṽj =

{
Vi, j = τ (i),
0, else

(5.6)

as well as the associated coweights λ̃, μ̃.
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Fix an orientation of J extending that of I. Define the group G̃ :=
∏

j∈J GL(Ṽj),

its representation Ñ analogous to N above, and the corresponding algebra Ã. In
other words, we are extending our data from the quiver of I to that of J by “padding
by zero”.

Clearly, there are compatible isomorphisms G ∼= G̃ and N ∼= Ñ. From the
definitions, there is therefore an isomorphism of graded algebras

A ∼= Ã.(5.7)

In fact this is an isomorphism of graded Poisson algebras, since it lifts to an iso-

morphism of their deformations A�
∼= Ã� (these deformations are defined as in

[1, Section 3(vi)]). By applying Theorem 5.4, we get:

Proposition 5.8. The isomorphism (5.7) induces a Poisson isomorphism

IGrλμ ∼= JGr˜λ
μ̃.(5.9)

Remark 5.10. Consider the inclusion τ of I = {1, . . . , n−1} into J = {1, . . . , kn−1},
defined by τ (i) = kn−n+i (this agrees with our previous conventions, up to twisting
by the longest elements of the symmetric groups Sn and Skn). For the dimension
vectors on I corresponding to λ ≥ μ = 0, we recover the isomorphism (5.1): this
follows from the decription of Theorem 5.4 in terms of generalized minors given in
[2, Appendix B].

Example 5.11. As a variation on this construction, consider a slice of the form
Grλλ−αi

. On the one hand, it was shown in [7, Example 2.2] that this variety is

Poisson isomorphic to the Kleinian singularity C
2/(Z/n), where n = 〈λ, α∨

i∗〉. On
the other hand, the quiver corresponding to Grλλ−αi

has Vi∗ = C and Vj∗ = 0 for
j �= i, so we have G = GL(1) and N = Hom(Cn,C). In particular, there is an
isomorphism to data corresponding to the Dynkin diagram of SL(2), explaining
the above ubiquitous appearance of Kleinian singularities.

5.2. An isomorphism of truncated shifted Yangians. In this section we’ll
explicitly describe the quantum analog of the isomorphism of Proposition 5.8, via
algebras IY λ

μ defined from Yangians (cf. Section 1.2.1).

In fact there is a family IY λ
μ (c) of such algebras, where c are certain parameters.

We refer the reader to [8, Section 3] for the precise definition of IY λ
μ (c); we’ll only

recall the parts of the definition we’ll need. The Yangian IY has a presentation with

generators F
(r)
i , H

(r)
i , and E

(r)
i , where r = 1, 2... and i ∈ I. The shifted Yangian

IYμ ⊂I Y is the subalgebra generated by all H
(r)
i and E

(r)
i , and the F

(s)
i such that

s > 〈μ∗, αi〉. Note that IY and IYμ can also be defined as C[�]–algebras, and we
are working with the specialization � = 1.

Now we fix c = (ci)i∈I , where each ci is a multiset of complex numbers with
|ci| = λi. From this data we define series ri(u) (see [8, Section 3.2]) and new Cartan

generators A
(s)
i using the formula

Hi(u) = ri(u)

∏
j∼i Aj(u− 1

2 )

Ai(u)Ai(u− 1)
,

where Hi(u) = 1 +
∑

s>0 H
(s)
i u−s and Ai(u) = 1 +

∑
s>0A

(s)
i u−s. Then IY λ

μ (c) is

the quotient of Yμ by the two-sided ideal generated by A
(s)
i where i ∈ I and s > mi.
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Let τ (c) be the collection of multisets indexed by J , where τ (c)τ(i) = ci and
otherwise τ (c)j is empty if j /∈ τ (I).

Proposition 5.12. We have an isomorphism of algebras

IY λ
μ (c) ∼= JY

τ(λ)
μ̃ (τ (c)).

Proof. Consider the inclusion of algebras IY ↪→J Y defined by X
(r)
i �→ X

(r)
τ(i), for

X = F,H,E. For any 
 ∈ I

〈μ̃, ατ(�)〉 = 〈τ (λ), ατ(�)〉 −
∑
i∈I

mi〈ατ(i), ατ(�)〉

= λ� −
∑
i∈I

miai�

= 〈μ, α�〉.

Therefore for any F
(r)
� ∈I Yμ we have that F

(r)
τ(�) ∈J Yμ̃, and hence IYμ ↪→J Yμ̃.

Define Iτ(λ)
μ̃ to be the two-sided ideal in JYμ̃ generated by

A
(s)
τ(i) s > mi, i ∈ I,

A
(r)
j r > 0, j ∈ J \ τ (I).

By construction we have the s.e.s.

0 −→ Iτ(λ)
μ̃ −→J Yμ̃ −→J Y

τ(λ)
μ̃ (τ (c)) −→ 0.

Composing with the inclusion of the previous paragraph we obtain a map

ϕ :I Yμ −→J Y
τ(λ)
μ̃ (τ (c)).

We make some observations about ϕ. First, ϕ(A
(r)
i ) = A

(r)
τ(i). Indeed, in

JY
τ(λ)
μ̃ (τ (c)) we have Aj(u) = 1 for j ∈ J \ τ (I). Hence for any i ∈ I the fol-

lowing equality in JY
τ(λ)
μ̃ (τ (c)) holds:

Hτ(i)(u) = rτ(i)(u)

∏
�∼iAτ(�)(u− 1

2 )

Aτ(i)(u)Aτ(i)(u− 1)
.

Since rτ(i)(u) = ri(u) and ϕ(Hi(u)) = Hτ(i)(u), this implies that ϕ(Ai(u)) =
Aτ(i)(u).

Since IY λ
μ (c) is the quotient of IYμ by the ideal generated by

A
(s)
i s > mi, i ∈ I,

ϕ factors through a map ϕ′ : IY λ
μ (c) −→J Y

τ(λ)
μ̃ (τ (c)).

Second, ϕ is surjective. To see this first note that in JY
τ(λ)
μ̃ (τ (c)), we have

X
(r)
j = 0 for any r > 0, j ∈ J \ I, and X = F,H,E. This follows since Aj(u) = 1

and the relations

(u− v)[Aj(u), Ej(v)] = Aj(u)(Ej(u)− Ej(v)),

(u− v)[Aj(u), Fj(v)] = (Fj(u)− Fj(v))Aj(u),

[E
(r)
j , F

(s)
j ] = H

(r+s−1)
j .
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Therefore JY
τ(λ)
μ̃ (τ (c)) is generated by the X

(r)
τ(i), i ∈ I, and these generators are

all in the image of ϕ.
It follows that ϕ′ is also surjective. We can define a map in the opposite direction

by declaring X
(r)
τ(i) �→ X

(r)
i for any i ∈ I, r > 0. This defines an algebra homomor-

phism. Indeed any relation only involving generators over τ (i)’s gets mapped to the
same relation only involving generators over i’s. Moreover, any relation involving

generators over j’s, where j ∈ J \ τ (I), is already zero in JY
τ(λ)
μ̃ (τ (c)). Finally,

as we saw above, this identifies Aτ(i)(u) with Ai(u). Since this map is manifestly
surjective it defines an inverse to ϕ′. �

Remark 5.13. With notation as in Section 5.1, there is a deformation of the (quan-
tum) Coulomb branch using the “flavour symmetry” group GF :=

∏
i GL(Wi)

[2, Section 3(v)]. The data c defines a specialization H∗
GF×C×(pt) → C (we also

specialize � = 1), and a corresponding specialized algebra A�=1,c. There is a surjec-
tion IY λ

μ (c) � A�=1,c by [2, Appendix B]. Appropriately twisting data by factors
of w0 as in Remark 5.10, one can verify that this surjection intertwines the isomor-

phism from Proposition 5.12 with an isomorphism A�=1,c
∼= Ã�=1,τ(c) analogous

to Proposition 5.8
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