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A BOUND FOR |G : Op(G)|p IN TERMS
OF THE LARGEST IRREDUCIBLE CHARACTER DEGREE

OF A FINITE p-SOLVABLE GROUP G
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(Communicated by Ronald M. Solomon)

Abstract. Let b(G) denote the largest irreducible character degree of a finite
group G, and let p be a prime. Two results are obtained. First, we show that,
if G is a p-solvable group and if b(G) < p2, then p2 6 ∣∣ |G : Op(G)|. Next, we
restrict attention to solvable groups and show that, if b(G) ≤ pα and if P is a
Sylow p-subgroup of G, then |P : Op(G)| ≤ p2α.

1. Introduction

Suppose G is a finite group. Let cd(G) denote the set
{
χ(1) | χ ∈ Irr(G)

}
, and

let b(G) denote the largest irreducible character degree of a group G. Theorem
12.29 of [1] states: Let p be a prime and let b(G) < p. Then G has a normal
abelian Sylow-p subgroup. It is immediate from this result that if b(G) < p, then
p 6 ∣∣|G : Op(G)|. Later, in the same chapter of [1], we have Theorem 12.32: Suppose

b(G) < p3/2 for some prime p. Then p2 6 ∣∣|G : Op(G)|. These facts raise the question:
if b(G) < pα for a real number α, what can be said about the p part of |G : Op(G)|?
We address this question in the case when G is a p-solvable group and obtain the
following two results:

Theorem A. Let G be a p-solvable group and let p be a prime. If b(G) < p2, then
p2 6 ∣∣|G : Op(G)|.
Theorem B. Let G be a solvable group, let p be a prime, and let α be a real
number. If b(G) ≤ pα and if P is a Sylow p-subgroup of G, then |P : Op(G)| ≤ p2α.
In addition, if |G| is odd, then |P : Op(G)| ≤ pα.

2. Preliminaries

In this section, we establish several facts regarding coprime actions that will be
needed in the proofs of Theorem A and Theorem B.

Theorem (2.1) (Brodkey). Let G be a finite group and assume that S ∈ Sylp(G)
is abelian. Then there exists T ∈ Sylp(G) with S ∩ T = Op(G).

Proof. This is Theorem 5.28 of [2].
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Lemma (2.2). Suppose that a p-group P acts on a p′-group H. If P fixes every
character in Irr(H), then the action of P on H is trivial.

Proof. If P fixes every character of H , then, by Brauer’s Theorem (6.32 of [1]),
P fixes every conjugacy class of H . Since the size of a conjugacy class of H is a
p′-number, it follows that each congugacy class contains a fixed point of P . Let
C = CH(P ) be the subgroup of fixed points. Since C meets each class of H
nontrivially, it follows that H is the (setwise) union of H-conjugates of C. This
forces H = C, and thus the action of P on H is trivial.

Last, we prove a special case of Theorem A.

Proposition (2.3). Suppose an abelian p-group P acts faithfully on an abelian
p′-group H, and let G = H×P . If b(G) < p2, then |P | ≤ p.

Proof. If x ∈ CP (h), then h = hx; thus x = xh and, since x ∈ P , it follows that
x ∈ P ∩ P h. Thus, in the action of P on H , the stabilizer of a point h in H ,
which is CP (h), is contained in P ∩P h. Since the action of P on H is faithful and
since H is abelian, Brauer’s Theorem (6.32 of [1]) implies that the action of P on
the abelian group Irr(H) is faithful. Since P is abelian, Brodkey’s Theorem (2.1)
together with the fact that point stabilizers are contained in Sylow intersections
implies that there is a regular orbit of P on Irr(H). Thus, for some character
λ ∈ Irr(H), we have IG(λ) = H . It follows that λG ∈ Irr(G), and therefore
|P | = |G : H | = λG(1) ≤ b(G). Since b(G) < p2, the conclusion holds.

3. Proof of Theorem A

In this section we prove Theorem A. We begin with a technical lemma.

Lemma (3.1). Suppose that G is a group with subgroups H,P,A, and B such that
G = HP and P = AB. If B ≤ NG([H,A]), then [H,A] / G and [H,A] · [H,B] =
[H,P ].

Proof. Assume that B ≤ NG([H,A]). Since H and A normalize [H,A], we have
that [H,A] / G and it follows that the product [H,A] · [H,B] is a subgroup.

Clearly [H,A] · [H,B] ≤ [H,P ]. We will show that this is an equality. Let [h, x]
be a generator of [H,P ], with h ∈ H and x ∈ P . Write x = ab, where a ∈ A and
b ∈ B. One can check that:

[h, x] = [h, ab] = [h, b][h, a]b ∈ [H,B] · [H,A]b = [H,A] · [H,B].

It follows that [H,A] · [H,B] = [H,P ].

Proof of Theorem A. LetG be a counterexample of minimal order. We may assume
that Op(G) = 1. SetH = Op′(G). By the famous Lemma 1.2.3 of Hall and Higman,
see Lemma 14.22 of [1], we have CG(H) ≤ H .

First, we will prove a fact that will be used repeatedly: If K is a subgroup of G
with H ≤ K, then Op(K) = 1. Assume that K ≥ H . Since H is a p′-group, H and
Op(K) are disjoint normal subgroups of K; thus Op(K) ≤ CK(H) ≤ H . Since H
has p′ order, this forces Op(K) = 1.

Now fix P ∈ Sylp(G). As we have seen, Op(HP ) = 1. Since P ∈ Sylp(HP ) and
since G is a minimal counterexample, we have G = HP .

Next, we will show that P is abelian of order p2. Let P1 ≤ P with |P : P1| = p.
Since H ≤ HP1, we have Op(HP1) = 1. Since |HP1| < |HP |, the minimality of G
implies that |P1| ≤ p. It follows that |P | = p2 and that P is abelian.
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Let ψ ∈ Irr(H) and χ ∈ Irr(G|ψ). By Clifford’s Theorem (6.1 of [1]), we have
χ|H = e

∑t
i=1 ψi , where {ψi}t

i=1 is the complete orbit of ψ in the conjugation action
of G on Irr(H), labeled so that ψ1 = ψ. Also et divides |G : H | = |P | = p2, by
Corollary 11.29 of [1]. Since χ(1) = etψ(1) and since et divides p2, the hypothesis
on character degrees of G implies that et ≤ p. It follows that et divides p. We
claim that e = 1. Suppose, for a contradiction, that e > 1. Then e = p and
t = 1; consequently, ψ is G-invariant. Since H is a normal Hall subgroup of G, it
follows that ψ extends to G (see Gallagher’s Theorem 8.15 of [1]). Further, since
P is abelian, every irreducible character of G that lies over ψ must be an extension
(Corollary 6.17 of [1]); however, this contradicts χH = pψ. Thus, as claimed, e = 1,
and it follows that χ|H =

∑p
i=1 ψi or χ|H = ψ.

Now let A be a subgroup of P that fixes every character in Irr(H). By Lemma
(2.2), A ≤ CP (H) ≤ H , and, since A is a p-group, this implies that A = 1.
Thus, the action of P on Irr(H) is faithful. Next we will deduce that P must be
an elementary abelian p-group. Let IP (ψ) denote the stabilizer in P of ψ. As
we have seen, for every character ψ ∈ Irr(H), either |P : IP (ψ)| = 1 or p; as a
consequence, |IP (ψ)| > 1. If P is cyclic, then P has a unique subgroup of order p.
This subgroup would have to be contained in IP (ψ), for every character ψ ∈ Irr(H).
This contradicts the fact that the action on Irr(H) is faithful. Thus P is not cyclic,
and, therefore, is elementary abelian of order p2.

Next we will show that H = [H,P ]. By properties of coprime actions, we
have that H = [H,P ] · CH(P ). If X ≤ P , then [H,X ] / G, since H normalizes
[H,X ] and P normalizes both H and X . Also, if X is nontrivial, then [H,X ]
is nontrivial, since CG(H) ≤ H . In particular, [H,P ] is an nontrivial normal
subgroup of G. Now consider [H,P ] · P . Observe that Op([H,P ] · P ) and [H,P ]
are disjoint normal subgroups of [H,P ] · P , therefore they centralize each other.
Of course, Op([H,P ] · P ) is contained in P and centralizes CH(P ), thus it follows
that Op([H,P ] · P ) centralizes H = [H,P ] ·CH(P ). Since the action of P on H is
faithful, we have Op([H,P ] ·P ) = 1. Further, P ∈ Sylp([H,P ] ·P ); therefore, by the
minimality of G, we have G = [H,P ] · P . Thus, we may conclude that H = [H,P ].

Let M ≤ H be a minimal normal subgroup of G; we will show that M = [H,X ]
for some nontrivial subgroup X ≤ P . Consider the group G/M . Since G is a
minimal counterexample and since a Sylow p-subgroup of G/M is isomorphic to P ,
we must have Op(G/M) > 1. Let X ≤ P such that Op(G/M) = XM/M . Then
X > 1 and [H,X ] ≤ M . As we have seen, 1 < [H,X ] / G for every nontrivial
subgroup X ≤ P ; thus M = [H,X ].

We now make several observations about an arbitrary subgroup A of P , with
|A| = p. We have seen that A must move some character in Irr(H). Also, we know
that 1 < [H,A] / G.

Assume now that [H,A] < H , and let B = Op(P · [H,A]). We will show that A
and B have the following dual relationship:

(i) [H,B] < H and A = Op(P · [H,B]);
(ii) B = CP ([H,A]) and A = CP ([H,B]);
(iii) |B| = |A| = p and A ∩B = 1, thus P = AB.

By properties of coprime actions, H = [H,A] · CH(A). Now consider the group
P · [H,A]. This is a proper subgroup of G, since [H,A] is proper in H ; also,
P ∈ Sylp(P · [H,A]). Since G is a minimal counterexample, it follows that B >
1. Next observe that [H,A] and B are disjoint normal subgroups of P · [H,A],
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hence B ≤ CP ([H,A]). Using properties of coprime actions again, we have that
[[H,A], A] = [H,A], which is nontrivial. It follows that A does not centralize [H,A],
however, B does, and therefore A 6≤ B. Since B is nontrivial and |P | = p2, it follows
that |B| = p. Also, since A is nontrivial, we have that P = AB and A∩B = 1; thus
statement (iii) is proved. Further, since A 6≤ CP ([H,A]), we have CP ([H,A]) < P .
Thus 1 < B ≤ CP ([H,A]) < P , and it follows that B = CP ([H,A]). Thus the first
statement in (ii) is proved.

Observe that, sinceB centralizes [H,A] and since P is abelian, we have [[A,H ], B]
= 1 = [[B,A], H ]. By the Three Subgroups Theorem, it follows that [[H,B], A] = 1,
and thus A ≤ CP ([H,B]). Since A is not centralized by H , we have that [H,B] <
H , and thus the first statement in (i) holds. Further, since CP ([H,B]) is con-
tained in the abelian group P , we have CP ([H,B]) ≤ Op(P · [H,B]), and, since
[H,B] < H , the same reasoning that we used to show that Op(P · [H,A]) is proper
in P yields that Op(P · [H,B]) is proper in P . Since A is nontrivial, it follows that
A = CP ([H,B]) = Op(P · [H,B]), and the rest of the assertion has been proved.

When the situation arises that [H,A] < H , we will call the group B thus iden-
tified the dual of A.

Now suppose that A is a subgroup of P of order p, and assume that [H,A] is
proper in H . We claim that [H,A] is a minimal normal subgroup of G. Since
1 < [H,A] / G, we may fix a minimal normal subgroup M of G with M ≤ [H,A].
As we have seen, M = [H,X ] for some nontrivial subgroup X ≤ P . If X = A, then
M = [H,A] and the claim holds. Otherwise, X 6= A, in which case P = XA, and
Lemma (3.1) yields

H = [H,X ] · [H,A] ≤M · [H,A] ≤ [H,A].

This contradicts the fact that [H,A] is proper in H . Therefore X = A, and hence
[H,A] is minimal normal.

Continue to assume that A is a subgroup of P of order p with [H,A] proper in
H , and let B be the dual of A. We will show that H = [H,A] × [H,B], where
[H,A] and [H,B] are minimal normal subgroups of G. Since [H,A] is proper in H ,
the duality of A and B implies that [H,B] is proper in H , and thus both [H,A]
and [H,B] are minimal normal subgroups of G. Since P = AB, Lemma (3.1) yields
[H,A] · [H,B] = H. If [H,A] ∩ [H,B] > 1, then, by the minimality of the factors,
we have [H,A] = [H,B], and hence H = [H,A], which is a contradiction. It follows
that [H,A] ∩ [H,B] = 1, and thus H = [H,A]× [H,B].

We will now show that, in fact, there are no subgroups A ≤ P of order p with
[H,A] proper in H . Assume, for a contradiction, that such a subgroup A does exist,
and let B be the dual of A. Then P = A×B, and H = [H,A]× [H,B]. We claim
that

G = ([H,A] ·A)× ([H,B] · B).

Each of [H,A] · A and [H,B] · B is a subgroup of G. By duality, A centralizes
[H,B], and thus A centralizes [H,B] ·B. Also [H,A] centralizes [H,B], since these
are disjoint normal subgroups, and [H,A] centralizes B, by the duality of A and
B. Thus [H,A] · A centralizes [H,B] · B. Since H = [H,A] · [H,B] and P = AB,
we have that G = ([H,A] · A) · ([H,B] · B). To see that this is a direct product,
we consider the orders of the factors. Since H and P are direct products, we have
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that |H | = |[H,A]| · |[H,B]| and |P | = |A| · |B|. Since G = HP , it follows that

|G| = |H | · |P | = |A| · |[H,A]| · |B| · |[H,B]|.

Finally, since G = ([H,A] · A) · ([H,B] · B), we can deduce that ([H,A] · A) ∩
([H,B] ·B) = 1, and thus G = ([H,A] ·A)× ([H,B] · B).

Next, observe that A must move some character in Irr([H,A]). If not, then by
Lemma (2.2), A acts trivially on [H,A]. However, by properties of coprime actions,
[[H,A], A] = [H,A], which contradicts the fact that [H,A] > 1. Thus, the direct
factor [H,A] · A has some irreducible character of degree divisible p. The same is
true for [H,B] · B, hence G must have an irreducible character of degree at least
p2 and this contradicts the hypothesis on b(G). Therefore, for every subgroup A of
order p, we must have [H,A] = H .

For our last observation before returning to character theory, we will show that
H is the direct product of isomorphic nonabelian simple groups. First, we will show
that H is a minimal normal subgroup of G. Let M be minimal normal in G with
M ≤ H . Then M = [H,X ] for a nontrivial subgroup X ≤ P . Since X > 1, we have
H = [H,X ], and therefore H = M . It now follows that H is the direct product of
isomorphic simple groups. Further, if one of these direct factors of H is abelian,
then H is abelian and Proposition (2.3) leads to a contradiction. It follows that H
has the claimed structure.

Let ψ ∈ Irr(H), and assume that ψ is moved by P . Let A = IP (ψ), and let
χ ∈ Irr(G|ψ). We have seen that 1 < A < P , and that χH is the sum of p
distinct conjugates of ψ. Since χ(1) < p2, it follows that ψ(1) ≤ p − 1. Now, let
C = CH(A); notice that H = [H,A] · C and that P ≤ NG(C), since P centralizes
A which uniquely determines C. Also note that ker(ψ) < H , since the trivial
character is, of course, invariant.

We now consider ψC . By Theorem 13.14 of [1], which follows from the Glauber-
man correspondence, we have that ψC = aα+ pΦ where α ∈ Irr(C), a ≡ ±1 (mod
p), and Φ is a, possibly zero, character of C. Since ψ(1) ≤ p − 1, we have Φ = 0,
and a = 1 or a = p− 1. Thus, either ψC = α or ψC = (p− 1)α, where α ∈ Irr(C),
and if the latter case holds, then α is linear. The character α is the Glauberman
correspondent of ψ. Note that, since ψ is nontrivial, α is nontrivial as well. Next
we will see that, in fact, the case ψC = α never occurs.

Suppose that ψC = α. Let ψ̂ be the canonical extension of ψ to the inertial
subgroup I = IG(ψ); thus ψ̂ is the unique extension of ψ to I with o(ψ̂) a p′-number.
The existence of ψ̂ is guaranteed by Gallagher’s Theorem (Corollary 6.28 of [1]).
Let < be an irreducible representation that affords ψ̂. Then [<(C),<(A)] = 1,
since C is centralized by A. Also, <C is irreducible, since it affords the irreducible
character α. By Schur’s Lemma, we have that <A is a scalar representation. Thus
[<(H),<(A)] = 1, and it follows that [H,A] ≤ ker(ψ̂). Further, since [H,A] ≤ H ,
we have [H,A] ≤ ker(ψ̂) ∩ H = ker(ψ) < H . However, we have shown that
[H,A] = H for every subgroup A ≤ P with |A| = p. This contradiction implies
that, for every non-P -invariant character ψ ∈ Irr(H), we have ψC = (p − 1)α for
some nontrivial linear character α ∈ Irr(C).

For the final contradiction, we consider what is known about ψ. Since ψ is
not P -invariant, we have ψ 6= 1H , and thus its Glauberman correspondent α is a
nontrivial linear character of C. Since α is nontrivial, C is not contained in ker(ψ),
and since α is linear, Z(ψ) is contained in C; thus Z(ψ) > ker(ψ). Since each
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of Z(ψ) and ker(ψ) is normal in H , it follows that H has a nontrivial abelian (in
fact, cyclic) section Z(ψ)/ ker(ψ). This contradicts the fact that H is the direct
product of nonabelian simple groups. Thus, our minimal counterexample G cannot
exist.

3. Proof of Theorem B

In this section, we consider what can be said if the character degree hypothesis of
Theorem A is weakened to b(G) ≤ pα. If attention is restricted to solvable groups,
then, as a direct consequence of a theorem of D. Passman, Theorem B is gained.

Proof of Theorem B. Without loss of generality, we may assume that 1 = Op(G) <
G. For P ∈ Sylp(G), our aim is to show that |P | ≤ p2α. Set H = Op′(G), and
note that H is nontrivial, since G is solvable with Op(G) = 1. As in the proof of
Theorem A, we may assume that G = HP .

Next we show that we may assume that H is nilpotent, or equivalently, that
H = F(G). Since Op(G) = 1, we have F(G) ≤ H . Further, since G is solvable,
CG(F(G)) ≤ F(G). It follows that Op(F(G) · P ) = 1, and, since b(F(G) · P ) ≤
b(G) ≤ pα, the hypotheses hold in the group F(G) · P . Since P ∈ Sylp(F(G) · P ),
we may hence assume that H is nilpotent.

Now, we consider the coprime action of P on the abelian group Irr(H/Φ(H)).
Since the action of P on the nilpotent group H is coprime and faithful, it follows
that the action of P on the abelian group H/Φ(H) is faithful, and thus, by Lemma
(2.2), the action of P on Irr(H/Φ(H)) is faithful. By Corollary 2.4 of [3], there
exists λ ∈ Irr(H/Φ(H)), such that the P -orbit of λ has size at least

√|P |, and thus
for any character χ ∈ Irr(G|λ), we have χ(1) ≥ √|P |. Since pα ≥ b(G) ≥ χ(1), it
follows that pα ≥ √|P |, and therefore |P | ≤ p2α.

Finally, we observe that, if |G| is odd, then Corollary 2.4 of [3] asserts that there
exists λ ∈ Irr(H/Φ(H)), such that the P -orbit of λ has size at least |P |. In this
case, it follows that |P | ≤ pα.
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