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Abstract. We give an algebraic version of a result of G. I. Kac, showing that a
semisimple Hopf algebra A of dimension pn, where p is a prime and n > 0, over
an algebraically closed field of characteristic 0 contains a non-trivial central
group-like. As an application we prove that, if n = 2, A is isomorphic to a
group algebra.

Introduction

Throughout the paper we work over an algebraically closed field k of character-
istic 0.

Let p be a prime. Recently Y. Zhu [Z] proved that a Hopf algebra of dimension
p is isomorphic to the group algebra kCp of the cyclic group Cp of order p. For
this, he reformulated G. I. Kac’s Theorem [K, Theorem 2] on ‘ring groups’. In this
paper, first we give an algebraic version of another result [K, Corollary 2] of Kac
to show that a semisimple Hopf algebra of dimension pn with a positive integer
n contains a non-trivial central group-like. Secondly, applying the first result, we
classify all semisimple Hopf algebras of dimension p2. Namely we prove that such
a Hopf algebra is isomorphic to the group algebra kCp2 or k(Cp × Cp).

The pn theorem

Let A be a finite-dimensional Hopf algebra with antipode S. Suppose that
A is semisimple as an algebra, or equivalently cosemisimple as a coalgebra, or
equivalently involutory, namely S◦S = id (See [LR1, Theorem 3.3]; [LR2, Theorems
1, 3]).

Denote by A∗ the dual Hopf algebra Homk(A, k) of A. Let λ be an integral in
A∗ such that λ(1) = (dim A)1. Then it follows by [LR2, Proposition 1] that λ is
the character of the regular representation of A, that is, λ(a) for a ∈ A equals the
trace of the right (or left) multiplication b 7→ ba (b ∈ A) by a. Regard A∗ as a right
A-module with the action determined by

(f a)(b) = f(bS(a)) (f ∈ A∗, a, b ∈ A).

Then one sees from [Sw, Theorem 5.1.3] that

α : A→ A∗, α(a) = λ a
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gives a right A-linear and left A∗-linear isomorphism, where A has the left A∗-
module structure arising from the natural right A-comodule structure.

Lemma. α gives linear isomorphisms between each pair in (a), (b) below.
(a) The subalgebra kG(A) of A spanned by the group-likes G(A) and the sum of

the 1-dimensional ideals of A∗.
(b) The center Z(A) of A and the subalgebra Ck(A) of A∗ spanned by the char-

acters of A.

Proof. For (a), one has only to see that α gives a 1-1 correspondence between the
1-dimensional left A∗-submodules of A and of A∗. (Note that a 1-dimensional left
ideal of A∗ is actually two-sided since A∗ is semisimple.)

For (b), we see first that the antipode S gives a permutation of the primitive
central idempotents in A, which form a k-basis of Z(A). Let e be a primitive
central idempotent in A and let χ be the irreducible character corresponding to
e (that is, the character of the representation A → eA). Then it follows that
α(S(e)) = χ(1)χ (6= 0), where χ(1) equals the degree of χ. From these we have
that Z(A) ' Ck(A).

Corollary. There is a 1-1 correspondence g ↔ I between the central group-likes g
in A and the 1-dimensional ideals I of A∗ included in Ck(A), such that 1↔ kλ.

Theorem 1. Suppose that the dimension dimA = pn, where p is a prime and n is
a positive integer. Then there is a non-trivial central group-like in A.

Proof. By the Corollary it suffices to prove that there is a 1-dimensional ideal
I 6= kλ of A∗ which is included in Ck(A).

Let e1 = 1
dimAλ, e2, . . . , em be orthogonal primitive idempotents in Ck(A) whose

sum is 1. Then we have

A∗ = kλ⊕ e2A
∗ ⊕ · · · ⊕ emA∗.

Since each dim eiA
∗ divides pn by [Z, Theorem 1], it follows by counting dimensions

that there is 2 ≤ i ≤ m such that dim eiA
∗ = 1. This eiA

∗ is the required I.

This theorem is an algebraic (and hopefully accessible) version of a result [K, Corol-
lary 2] of G. I. Kac on ‘ring groups’.

The p2
theorem

Theorem 2. A semisimple Hopf algebra of dimension p2 with a prime p is iso-
morphic to the group algebra kCp2 or k(Cp × Cp), where Cn is the cyclic group of
order n.

Proof. Let A be a semisimple Hopf algebra of dimension p2. It suffices to show that
A is commutative and cocommutative.

It follows from Theorem 1 and [NZ, Theorem 7] that there is a group G of group-
likes in A such that G ⊂ Z(A) and the order |G| = p. Since G ⊂ Z(A), the Hopf
subalgebra K = kG is normal, so that we have an extension [M1, Definition 1.3]

1→ K → A→ H → 1

of finite-dimensional Hopf algebras. Since this is cleft (roughly A ' K⊗kH) by [S,
Theorem 2.4], it follows that dimH = p, so that H ' kCp by Zhu’s Theorem [Z,
Theorem 2] cited in the Introduction. One sees immediately from [DT, Theorem
11] that, as an algebra including K,A is a crossed product of H over K. In the
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terminology of group theory, A is a crossed product K ∗Cp [P, p. 2] of Cp over K.
Here the associated action of Cp on K is trivial, since K is central in A. Hence A
is a twisted group ring Kt[Cp] [P, p. 4], a cyclic extension of a central subalgebra.
This is trivially commutative. Thus A is commutative. By applying the result to
A∗, it follows that A is cocommutative.

Using this result we classify all semisimple Hopf algebras of dimension p3 with an
odd prime p in the final version of [M3], while such Hopf algebras of dimension
8 = 23 are classified in [M2].
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