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ON A CONVOLUTION INEQUALITY OF SAITOH

MICHAEL CWIKEL AND RONALD KERMAN

(Communicated by Andrew M. Bruckner)

Abstract. Let F1, F2, . . . , Fj , . . . be in the class Lloc(R+) of locally inte-

grable functions on R+ = (0,∞). Define the convolution product
∏m

j=1
∗Fj

inductively by [
∏2

j=1
∗Fj ](x) = (F1 ∗ F2)(x) =

∫ x
0
F1(y)F2(x − y) dy and∏m

j=1
∗Fj = [

∏m−1

j=1
∗Fj ] ∗ Fm for m > 2. The inequality∫ ∞

0

x−(m−1)(p−1)

∣∣∣∣∣
[
m∏
j=1

∗Fj

]
(x)

∣∣∣∣∣
p

dx ≤ [(m− 1)!]1−p
m∏
j=1

∫ ∞
0

|Fj(y)|p dy

is obtained for each p, 1 < p <∞. Further, the constant [(m−1)!]1−p is shown
to be the best possible, and the nonzero extremal functions are determined.

1. Introduction

Let F1, F2, . . . , Fj , . . . be in the class Lloc(R+) of complex-valued locally inte-
grable functions on R+ = (0,∞) (i.e., they are integrable on (0, r) for each r > 0).

Define the convolution product
∏m
j=1 ∗Fj by [

∏1
j=1 ∗Fj ] = F1, [

∏2
j=1 ∗Fj ](x) =

(F1 ∗ F2)(x) =
∫ x

0
F1(y)F2(x − y) dy and inductively for m > 2 by

∏m
j=1 ∗Fj =

[
∏m−1
j=1 ∗Fj ] ∗Fm. It is easy to check that each of the functions

∏m
j=1 ∗Fj must also

be in Lloc(R+).
Our result here is

Theorem. Fix p, 1 < p <∞. Then, for each positive integer m,∫ ∞
0

x−(m−1)(p−1)

∣∣∣∣∣∣
 m∏
j=1

∗Fj

 (x)

∣∣∣∣∣∣
p

dx ≤ [(m− 1)!]1−p
m∏
j=1

∫ ∞
0

|Fj(x)|p dy.(1.1)

The constant [(m − 1)!]1−p is best possible. Moreover the (nonzero ) extremal
functions are of the form Fj(y) = Cje

−cy a.e., where Cj are constants and Re c > 0,
j = 1, . . . ,m.

The above result is known in the case p = 2 and m even, where it was proved
by Saitoh [5] using Aronszajn’s theory of reproducing kernels.
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Our proof of the above theorem uses Hölder’s inequality, Titchmarsh’s convolu-
tion theorem, and the well-known functional equation for exponential functions.

2. The proof of the theorem

For n ≥ 1 we have∫ ∞
0

x−n(p−1)

∣∣∣∣∣∣
n+1∏
j=1

∗Fj

 (x)

∣∣∣∣∣∣
p

dx

=

∫ ∞
0

x−n(p−1) dx

∣∣∣∣∣∣
∫ x

0

y(n−1)/p′y(1−n)/p′

 n∏
j=1

∗Fj

 (y)Fn+1(x− y) dy

∣∣∣∣∣∣
p

where p′ = p
p−1 . Applying Hölder’s inequality to the inner integral we obtain that

the above expression is dominated by∫ ∞
0

x−n(p−1)x
n(p−1)

np−1
dx

∫ x

0

y−(n−1)(p−1)

∣∣∣∣∣∣
 n∏
j=1

∗Fj

 (y)

∣∣∣∣∣∣
p

|Fn+1(x− y)|p dy.

Applying Fubini’s theorem to this integral we see that we have shown∫ ∞
0

x−n(p−1)

∣∣∣∣∣∣
n+1∏
j=1

∗Fj

 (x)

∣∣∣∣∣∣
p

dx

≤ n1−p
∫ ∞

0

y−(n−1)(p−1)

∣∣∣∣∣∣
 n∏
j=1

∗Fj

 (y)

∣∣∣∣∣∣
p

dy

∫ ∞
0

|Fn+1(t)|p dt.

(2.1)

We can now obtain (1.1) by induction. The case m = 1 is trivial. The case
m = 2 is simply (2.1) with n = 1. If (1.1) holds for m = n, then (2.1) yields that∫ ∞

0

x−n(p−1)

∣∣∣∣∣∣
n+1∏
j=1

∗Fj

 (x)

∣∣∣∣∣∣
p

dx

≤ n1−p[(n− 1)!]1−p
n∏
j=1

∫ ∞
0

|Fj(y)|p dy
∫ ∞

0

|Fn+1(t)|p dt

= (n!)1−p
n+1∏
j=1

∫ ∞
0

|Fj(y)|p dy,

completing the proof of (1.1).
Now we determine under what conditions equality can hold in (1.1), apart from

the obvious and trivial cases where m = 1 or m > 1 and one or more of the functions
Fj vanish a.e. Equality in (1.1) implies that equality holds in (2.1) for each positive
integer n with n ≤ m−1. This happens only if equality holds in Hölder’s inequality,
i.e., only if for a.e. x > 0 there exists a number k(x) ∈ C such that

y(1−n)/p′

 n∏
j=1

∗Fj

 (y)Fn+1(x− y) = k(x)y(n−1)/p(2.2)
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for a.e. y ∈ (0, x). It is convenient to rewrite this in the form:

For a.e. x ∈ R+ f(y)g(x− y) = k(x) for a.e. y ∈ (0, x),(2.3)

where g = Fn+1 and f(y) = y1−n[
∏n
j=1 ∗Fj ](y).

Our next step is to prove that k : R+ → C is a measurable function. This is not
quite as obvious as it might seem at first. Observe that (2.3) is not automatically
the same as saying f(x)g(x− y) = k(x) for a.e. x in some interval, for various fixed
values of y. (See Remark 2.7 below for further discussion of this matter.) Our proof
will use an auxiliary function of the form

h(x, y) :=
U(x)

x
· χ{(x,y)|0<y<x}(x, y) · V (Re{f(y)g(x− y)}).

We need U to be integrable and strictly positive with
∫∞

0
U(x) dx = 1, and V :

R→ R must be continuous, strictly monotone, and bounded (e.g. take U(x) = e−x

and V (t) = arctan t). Clearly h is an integrable function on R+ × R+. So, by Fu-
bini’s theorem, the function H(x) :=

∫∞
0
h(x, y) dy must be an integrable and thus

measurable function of x on R+. But, by (2.3), we have H(x) = U(x)V (Re k(x))

for a.e. x ∈ R+. Consequently Re k(x) = V −1(H(x)
U(x) ) must be measurable. Similarly

Im k(x) is also measurable, and therefore so is k.
Now we can deduce that the nonnegative function

ϕ(x, y) = |f(y)g(x− y)− k(x)| · χ{(x,y)|0<y<x}(x, y)

must also be measurable on R+ × R+. So we can apply Tonelli’s theorem (i.e.,
Fubini’s theorem for nonnegative but not necessarily integrable functions) to ϕ.
Using (2.3) we obtain first that f(y)g(x− y) = k(x) for a.e. (x, y) in {(x, y) : 0 <
y < x}. Equivalently we have that

f(α)g(β) = k(α+ β)(2.4)

holds for a.e. (α, β) in the set R+ × R+. We also obtain that for a.e. y ∈ R+,
f(y)g(x − y) = k(x) for a.e. x ∈ (y,∞). This implies that k must be locally
integrable on R+ since g is.

We have excluded the case where g vanishes a.e. and we can also assume that f is
nonzero on some subset of positive measure of R+ since otherwise, by Titchmarsh’s
theorem [6] (see also [2], [3]), at least one of the functions F1, F2, . . . , Fn would have
to vanish a.e. Thus, by the Lebesgue differentiation theorem, there exist intervals

[α0, α1] and [β0, β1] in R+ such that
∫ α1

α0
f(t) dt and

∫ β1

β0
g(t) dt are both nonzero.

We deduce that f(α) coincides for a.e. α ∈ R+ with the continuous function

f1(α) :=

∫ β1

β0

k(α+ t) dt/

∫ β1

β0

g(t) dt,

and analogously g(β) coincides for a.e. β ∈ R+ with the continuous function
g1(β) :=

∫ α1

α0
k(t+ β) dt/

∫ α1

α0
f(t) dt. Now for every positive t and r and for every

positive α and β such that t = α+ β we have

1

r2

∫ r

0

∫ r

0

k(t+ x+ y) dx dy =
1

r2

∫ r

0

∫ r

0

f1(α+ x)g1(β + y) dx dy.

We deduce that the limit k1(t) := limr→0
1
r2

∫ r
0

∫ r
0 k(t+x+y) dx dy exists for every
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t > 0 and satisfies

k1(α+ β) = f1(α)g1(β)(2.5)

for all positive α and β. Clearly k1(t) = f1(1
2 )g1( t2 ) and so is a continuous function

on R+.
We claim that all of the functions f1(t), g1(t), and k1(t) are nonzero for every

t > 0. Suppose not; then k1(δ) = 0 for some δ > 0, and either f1( δ2 ) or g1( δ2 )

must also vanish. Then, for every γ > δ
2 we have k1(γ) = f1(γ − δ

2 )g1( δ2 ) =

f1( δ2 )g1(γ − δ
2 ) = 0 and thus k1 vanishes on the interval [ δ2 ,∞). By reiterating this

argument sufficiently many times we see that k1(t) = 0 for each t > 0. As explained
above, each of the functions f and g is nonzero on some set of positive measure.
This implies that the same is true for f1 and g1. But this contradicts (2.5) for some
values of α and β and so proves our claim.

It now follows, again using (2.5), that the limits f1(0+) and g1(0+) both exist and
are nonzero. Hence the function H(x) := f1(x)/f1(0+) = g1(x)/g1(0+) satisfies
H(x − y)H(y) = k1(x)/f1(0+)g1(0+) = H(x) for all 0 < y < x. This implies
that f1(x) = f1(0+)e−cx and g1(x) = g1(0+)e−cx, where c is a constant satisfying
Re c > 0. See [1], pp. 35–36.

In particular, setting n = 1, the above argument shows that

Fj(x) = Cje
−cx a.e.(2.6)

for j = 1, 2. Now, if (2.6) holds for j = 1, 2, . . . , n, then clearly n∏
j=1

∗Fj

 (y) = const. yn−1e−cy.

But also, again by the preceding argument, [
∏n
j=1 ∗Fj ](y) = const. yn−1e−c

′y and

Fn+1(y) = const. e−c
′y for some constant c′. It follows that c′ = c, which shows

that (2.6) also holds for j = n+ 1, and so, by induction, for all j = 1, 2, . . . ,m.

Remark 2.7. The proof of measurability of k given above may seem somewhat
indirect. Let us indicate some difficulties which are encountered if we attempt
to give a more direct proof. Let F (x, y) = f(y)g(x − y)χT (x, y) and K(x, y) =
k(x)χT (x, y), where T = {(x, y) : 0 < y < x}, and let N = {(x, y) ∈ R+ × R+ :
F (x, y) 6= K(x, y)}. For each x > 0 define the x-section Nx = {y > 0 : (x, y) ∈ N},
and for each y > 0 define the y-section Ny = {x > 0 : (x, y) ∈ N}. To show that k
is measurable it would suffice to show that Ny has zero measure for each y in some
sequence tending to zero. We know from (2.3) that Nx has zero measure for a.e.
x > 0. If we knew that N were a measurable subset of R+ × R+, then we could
immediately apply Tonelli’s theorem to obtain that N has zero planar measure and
consequently Ny has zero measure for a.e. y. But to show that N is measurable
we need to know what we are trying to prove, namely that k is measurable. As
a further indication of the possible difficulties here, we mention the example due
to Sierpinski (see [4], p. 167) of a nonmeasurable subset Q of [0, 1] × [0, 1] all of
whose x- and y-sections are measurable subsets of [0, 1]. In fact, Qx has measure
1 and Qy has measure 0. So if we define P = {(x, y) : (y, x) ∈ Q} and then

Ñ =
⋃
m≥0,n≥0 P + (m,n) we obtain that Ñy has infinite measure for each y > 0

even though Ñx has measure 0 for each x > 0.
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