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RIBBON CONCORDANCE DOES NOT IMPLY A DEGREE ONE MAP

KATURA MIYAZAKI

(Communicated by Frederick R. Cohen)

Abstract. We give an example of classical knots Ko , K\ such that ( 1 ) K\ is

ribbon concordant to K0 , (2) there are no degree one maps from the exterior

of K{  in S3 to that of K0 •

Throughout this note let A"0 and Kx denote classical knots, Ai denote the

Alexander module of Ki, and X¡ the exterior of K¡ in S   for i = 0,1 . Let

A = Z[r,r'].
In [2] Gordon introduced the notion of ribbon concordance. We say Kx is

ribbon concordant to KQ (and write Kx > KQ ) if there is an annulus C in

S x I such that Cfl5 x {/'} = Kf, i = 0,1, and the restriction to C of

the projection S x I —* I is a Morse function with no local maxima. Gordon

asked:

Question 1 ([2], 6.4). Let v(K¡) denote the Gromov norm of Xi. Does Kx > K0

imply v(Kx)>v(K0)1

If there were a degree one map from Xx to X0, then an affirmative answer

to the question would follow from the property of the Gromov norm. Such a

degree one map would also imply that A0 be a quotient of Ax . This is observed

by Gilmer [1], and he asks:

Question 2 ([I], 4.6). Does Kx > K0 imply that there is a A-epimorphism from

Ax  to A0?

In this paper we give a negative answer to this question.

Proposition 1. There are K0 and Kx such that

(1) KX>K0,
(2) there are no A-epimorphisms from A.  to AQ.

In particular, there are no degree one maps from X, to XQ.
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In fact Gilmer's question is posed in an algebraically generalized form, but

the proposition still gives a "no" answer. However, Question 1 remains open.

I would like to thank Professor Gordon for suggesting this problem to me.

2.

Let KQ be a knot with a Seifert matrix VQ below. Let Kx

F = (13    l
Ko     I o    1

/13 1    0 3\
0 10 0
0 0   0 2

V 3 0    1 i)
be a knot with a Seifert matrix  F,  and Kx > K0.   The existence of Kx   is

guaranteed by [1, Theorem (1.3)]. Simplify the presentation matrix tVx-Vx

of Ax as follows.

/i3(i-i;

tvx - vx

0      3(i - 1)\
-1        t-1      0 0

0 0 0        2t - 1
V 3(r- 1)       0      t-2      t- 1   J

(     0 13(t-l)¿ + t      0 3(i — 1)^
-1              t-1             0 0
0                  0               0 It - 1

V3(/-l)             0 t-2 t-1   J

(     0 13(i-ir + /      0 *    \
-1 0 0 0

0 0 0      2t-l

V3(t-1)       3(i-r t — 2       **    J

0
3(t-l)2

0      2t-l

t — 2      **

0 0      It- 1 | =M.

3 t-2       **

Therefore Ax  is generated by three elements, say a , ß and y , subject to the

relations

It is easy to see that A0 is the cyclic A-module of order 13? -25?+13. Note

that AQ contains (t - 1)~  .
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Lemma 1. Suppose that there is a A-epimorphism f: Ax —> AQ. Then there are

u and v in A0 such that

3u + (x - l)v = 0        and (u,v) = (1), where x = (t - 1)~   .

Proof. Then f(a), f(ß) and f(y) generate AQ and satisfy the following equa-

tions.

(1) (13i2-25/+13)/(a) + */(y) = 0,

(2) (2/-l)/(y) = 0,

(3) 3/(a) + (t - l)f(ß) + * * f(y) = 0.

Since 13t2 -25t+ 13 is irreducible in A, (2) shows f(y) = 0. It follows from

(3) that

3f(a) + (t-2)f(ß)=0.

Multiplying by x = (t - 1)~  , we get

3xf(a) + (l-x)f(ß) = 0.

The desired equation follows by setting u = xf(a) and v = -f(ß).     o

We shall show that A0 does not have the elements u and v as in Lemma 1.

Express AQ in terms of x where x = (t - 1)~ ; then A0 is the cyclic Z[l +

x~ ,(1 + x-1)-1] module of order 1 + x_1 + 13x~ . Since x € AQ and

(1+x"1)"1 =x(x+ l)"1. We obtain:

A0 = Z[x,jc~' ,(1 + x)~X]/(x2 + x + 13).

Let D = Z[x]/(x +x+ 13) and S be the multiplicative set of D generated by

x and x + 1 . It follows that AQ = S~lD. Since D is Z[(-l + v/z5T)/2]

which is the ring of integers in Q(\/-51), in particular a Dedekind domain. In

fact A0 is also a Dedekind domain. The following algebraic lemmas establish

Proposition 1.

Lemma 2. If an ideal P is prime and nonprincipal in D, then so is PS~ D in

S~{D.

Lemma 3. In D the following hold:

(1) (3) = (3,x-l)2,

(2) (x-l) = (3,x-l)(5,x-l),

(3) (3,x - 1) and (5,x - 1) are prime but nonprincipal ideals in D, (and

hence also in S~lD by Lemma 2).

Proof of Proposition 1. If there is an epimorphism from Ax to AQ , by Lemma 1

there are u and v in S~]D such that 3u + (x - l)v = 0 and (u,v) = (1).

We have the ideal equation

(3)(u) = (x-\)(v).
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By Lemma 3 we obtain

(3,x- l)2(w) = (3,x- l)(5,x- l)(v)     in S~lD .

Since an ideal in the Dedekind domain S~ D has a unique prime ideal decom-

position, it follows that:

(u) = (5,x - 1)Q and (v) = (3,x - 1)Q for some ideal Q.

The ideal (u) is principal, but (5 ,x - 1) is not. It follows that Q ■£ (1). Thus

(u,v) = Q ^ (1), a contradiction to Lemma 1. The proof is completed.     D

Proof of Lemma 2. If PnS ^ 0, P contains a prime element x or x+1 . Thus

P is a principal ideal, a contradiction. It follows P n S — 0 . Then PS~lD is

prime. If PS~lD is principal, there is a b € P such that PS~lD = bS~]D.

Among all such b take one such that bD is maximal. This is possible because

D is Noetherian. Then b is not divisible by x or x + 1 . For an arbitrary

p € P there are sx,s2€ S and d € D such that p/sx = bd/s2. Thus s2p = by

for some y e D. Let s2 = px- ■ pr with pi. = x or x + 1 ; then p¡ \ b, so

that pi \y. An induction on r shows that y is divisible by s2, so p € bD. It

follows that P = bD. This contradicts the assumption that P is not principal.

Thus PS~lD is not principal.     D

Proof of Lemma 3. Since 0/(3,x - 1) = Z3[x]/(x - 1) = Z3, a domain, (3,

x - 1 ) is a prime ideal of norm 3. On the other hand we see that (3, x - 1 ) c

(3), for (x- l)2 = -3(x + 4) in D. Since the norm of (3,x- l)2 is 9, it

follows (3,x- 1)2 = (3).

If (3,x - 1) were principal, it could be written as

/       ,-l + v/r5T\        . ,     ^
I a + b--z-I     where a,b € Z .

1 1
Then the norm of (3,x-l) is ((2a-b) +51b )/4, which must be 3. However,

there are no integral solutions of

(2a-b)2 + 51b2 = 12.

Thus (3,x - 1) is not principal. By the similar arguments we can prove the

conclusions about (x-1) and (5,x-l).     D
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