RIBBON CONCORDANCE DOES NOT IMPLY A DEGREE ONE MAP

KATURA MIYAZAKI
(Communicated by Frederick R. Cohen)

Abstract

We give an example of classical knots K_{0}, K_{1} such that (1) K_{1} is ribbon concordant to K_{0}, (2) there are no degree one maps from the exterior of K_{1} in S^{3} to that of K_{0}.

1.

Throughout this note let K_{0} and K_{1} denote classical knots, A_{i} denote the Alexander module of K_{i}, and X_{i} the exterior of K_{i} in S^{3} for $i=0$, 1. Let $\Lambda=Z\left[t, t^{-1}\right]$.

In [2] Gordon introduced the notion of ribbon concordance. We say K_{1} is ribbon concordant to K_{0} (and write $K_{1} \geq K_{0}$) if there is an annulus C in $S^{3} \times I$ such that $C \cap S^{3} \times\{i\}=K_{i}, i=0,1$, and the restriction to C of the projection $S^{3} \times I \rightarrow I$ is a Morse function with no local maxima. Gordon asked:

Question 1 ([2], 6.4). Let $v\left(K_{i}\right)$ denote the Gromov norm of X_{i}. Does $K_{1} \geq K_{0}$ imply $v\left(K_{1}\right) \geq v\left(K_{0}\right)$?
If there were a degree one map from X_{1} to X_{0}, then an affirmative answer to the question would follow from the property of the Gromov norm. Such a degree one map would also imply that A_{0} be a quotient of A_{1}. This is observed by Gilmer [1], and he asks:
Question 2 ([1], 4.6). Does $K_{1} \geq K_{0}$ imply that there is a Λ-epimorphism from A_{1} to A_{0} ?

In this paper we give a negative answer to this question.
Proposition 1. There are K_{0} and K_{1} such that
(1) $K_{1} \geq K_{0}$,
(2) there are no Λ-epimorphisms from A_{1} to A_{0}.

In particular, there are no degree one maps from X_{1} to X_{0}.

[^0]In fact Gilmer's question is posed in an algebraically generalized form, but the proposition still gives a "no" answer. However, Question 1 remains open.

I would like to thank Professor Gordon for suggesting this problem to me.
2.

Let K_{0} be a knot with a Seifert matrix V_{0} below. Let K_{1}

$$
V_{0}=\left(\begin{array}{cc}
13 & 1 \\
0 & 1
\end{array}\right) \quad V_{1}=\left(\begin{array}{cccc}
13 & 1 & 0 & 3 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 \\
3 & 0 & 1 & 1
\end{array}\right)
$$

be a knot with a Seifert matrix V_{1} and $K_{1} \geq K_{0}$. The existence of K_{1} is guaranteed by [1, Theorem (1.3)]. Simplify the presentation matrix $t V_{1}-V_{1}^{T}$ of A_{1} as follows.

$$
\begin{aligned}
t V_{1}-V_{1}^{T} & =\left(\begin{array}{cccc}
13(t-1) & t & 0 & 3(t-1) \\
-1 & t-1 & 0 & 0 \\
0 & 0 & 0 & 2 t-1 \\
3(t-1) & 0 & t-2 & t-1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cccc}
0 & 13(t-1)^{2}+t & 0 & 3(t-1) \\
-1 & t-1 & 0 & 0 \\
0 & 0 & 0 & 2 t-1 \\
3(t-1) & 0 & t-2 & t-1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cccc}
0 & 13(t-1)^{2}+t & 0 & * \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 t-1 \\
3(t-1) & 3(t-1)^{2} & t-2 & * *
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccc}
13 t^{2}-25 t+13 & 0 & * \\
0 & 0 & 2 t-1 \\
3(t-1)^{2} & t-2 & * *
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccc}
13 t^{2}-25 t+13 & 0 & * \\
0 & 0 & 2 t-1 \\
3 & t-2 & * *
\end{array}\right) \equiv M .
\end{aligned}
$$

Therefore A_{1} is generated by three elements, say α, β and γ, subject to the relations

$$
M\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)=0
$$

It is easy to see that A_{0} is the cyclic Λ-module of order $13 t^{2}-25 t+13$. Note that A_{0} contains $(t-1)^{-1}$.

Lemma 1. Suppose that there is a Λ-epimorphism $f: A_{1} \rightarrow A_{0}$. Then there are u and v in A_{0} such that

$$
3 u+(x-1) v=0 \quad \text { and }(u, v)=(1), \quad \text { where } x=(t-1)^{-1}
$$

Proof. Then $f(\alpha), f(\beta)$ and $f(\gamma)$ generate A_{0} and satisfy the following equations.

$$
\begin{gather*}
\left(13 t^{2}-25 t+13\right) f(\alpha)+* f(\gamma)=0 \tag{1}\\
(2 t-1) f(\gamma)=0 \tag{2}\\
3 f(\alpha)+(t-2) f(\beta)+* * f(\gamma)=0 \tag{3}
\end{gather*}
$$

Since $13 t^{2}-25 t+13$ is irreducible in Λ, (2) shows $f(\gamma)=0$. It follows from (3) that

$$
3 f(\alpha)+(t-2) f(\beta)=0
$$

Multiplying by $x=(t-1)^{-1}$, we get

$$
3 x f(\alpha)+(1-x) f(\beta)=0
$$

The desired equation follows by setting $u=x f(\alpha)$ and $v=-f(\beta)$.
We shall show that A_{0} does not have the elements u and v as in Lemma 1. Express A_{0} in terms of x where $x=(t-1)^{-1}$; then A_{0} is the cyclic $Z[1+$ $\left.x^{-1},\left(1+x^{-1}\right)^{-1}\right]$ module of order $1+x^{-1}+13 x^{-2}$. Since $x \in A_{0}$ and $\left(1+x^{-1}\right)^{-1}=x(x+1)^{-1}$. We obtain:

$$
A_{0} \cong Z\left[x, x^{-1},(1+x)^{-1}\right] /\left(x^{2}+x+13\right)
$$

Let $D=Z[x] /\left(x^{2}+x+13\right)$ and S be the multiplicative set of D generated by x and $x+1$. It follows that $A_{0} \cong S^{-1} D$. Since D is $Z[(-1+\sqrt{-51}) / 2]$ which is the ring of integers in $Q(\sqrt{-51})$, in particular a Dedekind domain. In fact A_{0} is also a Dedekind domain. The following algebraic lemmas establish Proposition 1.
Lemma 2. If an ideal P is prime and nonprincipal in D, then so is $P S^{-1} D$ in $S^{-1} D$.

Lemma 3. In D the following hold:
(1) $(3)=(3, x-1)^{2}$,
(2) $(x-1)=(3, x-1)(5, x-1)$,
(3) $(3, x-1)$ and $(5, x-1)$ are prime but nonprincipal ideals in D, (and hence also in $S^{-1} D$ by Lemma 2).
Proof of Proposition 1. If there is an epimorphism from A_{1} to A_{0}, by Lemma 1 there are u and v in $S^{-1} D$ such that $3 u+(x-1) v=0$ and $(u, v)=(1)$. We have the ideal equation

$$
(3)(u)=(x-1)(v) .
$$

By Lemma 3 we obtain

$$
(3, x-1)^{2}(u)=(3, x-1)(5, x-1)(v) \quad \text { in } S^{-1} D
$$

Since an ideal in the Dedekind domain $S^{-1} D$ has a unique prime ideal decomposition, it follows that:

$$
(u)=(5, x-1) Q \text { and }(v)=(3, x-1) Q \text { for some ideal } Q .
$$

The ideal (u) is principal, but $(5, x-1)$ is not. It follows that $Q \neq(1)$. Thus $(u, v)=Q \neq(1)$, a contradiction to Lemma 1. The proof is completed.
Proof of Lemma 2. If $P \cap S \neq \varnothing, P$ contains a prime element x or $x+1$. Thus P is a principal ideal, a contradiction. It follows $P \cap S=\varnothing$. Then $P S^{-1} D$ is prime. If $P S^{-1} D$ is principal, there is a $b \in P$ such that $P S^{-1} D=b S^{-1} D$. Among all such b take one such that $b D$ is maximal. This is possible because D is Noetherian. Then b is not divisible by x or $x+1$. For an arbitrary $p \in P$ there are $s_{1}, s_{2} \in S$ and $d \in D$ such that $p / s_{1}=b d / s_{2}$. Thus $s_{2} p=b y$ for some $y \in D$. Let $s_{2}=p_{1} \cdots p_{r}$ with $p_{i}=x$ or $x+1$; then $p_{i}+b$, so that $p_{i} \mid y$. An induction on r shows that y is divisible by s_{2}, so $p \in b D$. It follows that $P=b D$. This contradicts the assumption that P is not principal. Thus $P S^{-1} D$ is not principal.
Proof of Lemma 3. Since $D /(3, x-1)=Z_{3}[x] /(x-1) \cong Z_{3}$, a domain, (3, $x-1)$ is a prime ideal of norm 3 . On the other hand we see that $(3, x-1)^{2} \subset$ (3), for $(x-1)^{2}=-3(x+4)$ in D. Since the norm of $(3, x-1)^{2}$ is 9 , it follows $(3, x-1)^{2}=(3)$.

If $(3, x-1)$ were principal, it could be written as

$$
\left(a+b \frac{-1+\sqrt{-51}}{2}\right) \quad \text { where } a, b \in Z .
$$

Then the norm of $(3, x-1)$ is $\left((2 a-b)^{2}+51 b^{2}\right) / 4$, which must be 3 . However, there are no integral solutions of

$$
(2 a-b)^{2}+51 b^{2}=12
$$

Thus $(3, x-1)$ is not principal. By the similar arguments we can prove the conclusions about $(x-1)$ and $(5, x-1)$.

References

1. P. Gilmer, Ribbon concordance and a partial order on S-equivalence classes, Topology Appl. 18 (1984), 121-144.
2. C. Gordon, Ribbon concordance of knots in the 3-sphere, Math. Ann. 257 (1981), 157-170.

Department of Mathematics, University of Texas at Austin, Austin, Texas 78712

[^0]: Received by the editors January 4, 1989.
 1980 Mathematics Subject Classification (1985 Revision). Primary 57M25; Secondary 57Q60.
 Key words and phrases. Ribbon concordance, degree one map, the ring of integers, Dedekind domain.

