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ON THE DEGREE OF THE
BRANDT-LICKORISH-MILLETT-HO POLYNOMIAL OF A LINK

MARK E. KIDWELL

ABSTRACT. Let Ql be the link polynomial defined by Brandt, Lickorish,

Millett, and Ho. Let degQr, be the maximum degree of a nonzero term. If

p(L) is any regular link projection and B is any bridge (maximal connected

component after undercrossing points are deleted), define the length of S as

the number of crossings in which the overcrossing segment is a part of B.

THEOREM 1. Let p(L) be a connected, regular link projection with N crossing

points. Let K be the maximal length of any bridge in p(L).  ThendegQr, <N — K.

THEOREM 2. Ifp(L) is a prime, connected alternating projection with N > 0

crossing points, then the coefficient of x is a positive number.

The Laurent polynomial Q of Brandt, Lickorish and Millett [BLM], and Ho [H]

was one of several link invariants to be discovered during the explosion of results

following Jones' important work of 1984. The polynomial is defined inductively by

Qu(x) = 1, where U is the the unknot, and by the relation

(1) Ql+(x) + QL_(x) = x(QLo(x) + QLoo(x)),

where L+ and L_ are related by a crossing switch at one "site" and Lq and L«, are

the two possible eliminations of that crossing (see Figure 1). String orientations and

the orientation of 3-space play no role in this definition. The proof of the existence

and invariance of Q (see [BLM]) is similar to that for other link polynomials

obeying relations analogous to (1).

In the planar projections with respect to which L+, L_, L0, and LM are defined,

L+ and L_ have one more crossing point than Lq and L^. Since the polynomials

Ql0 and Qlx are multiplied by x in (1), it is intuitively plausible that the degree of

the Q-polynomial counts the number of crossings in these projections. Of course this

cannot always be true because the Q-polynomial is an ambient isotopy invariant and

the crossing number of a projection is not. We must hope instead that the degree of

Q counts the minimal crossing number, a venerable invariant which until recently

has been computed only for relatively simple link types in an ad hoc manner.

In actuality, the degree of the Q-polynomial gives a lower bound on the difference

between the crossing number and another number associated to link projections.

We decompose a projection into bridges and define the length of a bridge as the

number of crossings in which the bridge forms the overcrossing segment. We then

prove that the degree of the Q-polynomial is less than or equal to N — K, where TV

is the crossing number and K is the length of the longest bridge of the projection.
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An alternating link projection may be defined as one in which all bridges have

length 1. We go on to prove that if p(L) is a prime, connected alternating projection

with TV crossings, then the degree of the Q-polynomial is exactly TV - 1. (The

definition of a prime projection is given in §1.)

Murasugi [M], Kauffman [K], and Thistlethwaite [T] have recently derived sim-

ilar results for the Jones polynomial, but without reference to bridge length. They

derive a number of geometric consequences which follow also from our results. For

example, it follows that a prime alternating link has an alternating projection with

fewer crossing points than any nonalternating projection of the same link.

Rather than duplicate these results, we investigate what our results have to say

about the Conway notation for a link [C]. If L is a prime, unsplittable alternating

link type, the leading coefficient of Ql will turn out to be positive and, if L is

nontrivial, even. One can eliminate two-sided regions (clasps) from a suitable pro-

jection of such a link without changing this leading coefficient. Since an algebraic

tangle [C] with more than one crossing always contains a clasp, the leading co-

effiecient of the Q-polynomial depends only on the underlying "basic polyhedron"

of the link. In particular, this coefficient is 2 for nontrivial arborescent links.

The author would like to thank Kenneth Millett for suggesting the problem

solved in this paper and Bruce Richter and Craig Bailey for useful discussions.

1. Definitions and preliminary results. In this paper, a knot will be

regarded as a special kind of link. The number degQ will refer to the highest

power of x that appears in Q(x), even if Q has terms of negative degree. (It is

known that for a link of / components, the lowest power of x that appears in Q is

1-/.)

We shall work throughout in the piecewise linear category. If p is a regular planar

projection of a link L, then N(p(L)) (or just TV if the context is clear) will stand

for the number of crossings in the projection.

If we delete the undercrossing points of L with respect to a regular projection p,

we partition the rest of L into open segments and simple closed curves. (The simple

closed curves occur only when p(L) contains an unknotted component in standard

position which lies above or is disjoint from all other components.) The projections

of the elements of this partition are called the bridges oîp(L). The length of a bridge

B, denoted k(B), is the number of crossings in which the overcrossing segment is

a part of B. (Traditionally, in defining the bridge number of a projection, bridges

of length zero are not counted. We have no reason to exclude them.)

We shall call a bridge B improper if:

(a) B is a simple closed curve and k(B) > 0; or
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Figure 2

(b) B is an open segment and one or both of the crossings at which B terminates

also has B over-crossing; or

(c) the crossings at which B terminates are identical and k(B) > 1 (see Figure

2(a)-(c)).

LEMMA 0. Ifp(L) contains an improper bridge B, then there is a projection p'

of L containing a bridge B' such that N(p'(L)) < N(p(L)) and N(p'(L)) -k(B') <

N(P(L))-k(B).

PROOF. In case (a), let c be any noncrossing point of B. By a combination of

Reidemeister moves II and III, B can be contracted to a small crossing-free circle

B' near c. Thus k(B') = 0 and N(p'(L)) = N(p(L)) - k(B). In case (b) let c

be a crossing at which B terminates and overcrosses and let U he a loop of B

with no undercrossings from c to c. By a combination of Reidemeister moves II

and III, U can be contracted to small loop whose only crossing point is c. If this

sequence of moves reduces N(P(L)) and k(B), it reduces them equally. If not, then

Reidemeister move I can be applied to the loop U. B is replaced by a bridge B'

with k(B') < k(B) - 1. Thus

N(p'(L)) - k(B') < (N(p(L)) - 1) - (k(B) - 1) = N(p(L)) - k(B).

In case (c), let c be the crossing at which B terminates. By a combination of

Reidemeister moves II and III, B can be contracted to a bridge B' of length 1.

N(p(L)) and k(B) are reduced equally.    D

The following trichotomy differs slightly from traditional definitions, but seems

most useful for our purposes. A projection p(L) is crossing free if N(p(L)) = 0,

alternating if k(B) = 1 for all bridges B in p(L), and nonalternating if k(B) > 1

for at least one bridge. Clearly, a crossing-free projection represents a trivial link

type. A link type possessing an alternating projection will be called alternating.

We shall have little need to consider the Q-polynomials of disconnected link

types, since the formula Q(Li JJ L2) = Q(Li)pQ(L2) of [BLM], where p = 2x~x —

1, tells us that the degree of Q(Li IJL2) is the sum of the degrees of Q(Li) and

Q(L2).
A projection p(L) will be called composite if there is a simple closed curve C in

the plane of the projection which intersects p(L) transversely in two points, and

both int C and ext C contain crossings of p(L). A projection which is not composite



758 M. E. KIDWELL

oo
Figure 3

is called prime. Note that a prime link type can have a composite projection if one

of the "factors" of p(L) is a nontrivial projection of a trivial arc. In particular,

any projection with a trivial loop is composite, with the lone exception of the

"lemniscate" projection of the unknot (Figure 3). This projection, although it does

not display minimal crossing number, is a prime, alternating, connected projection

whose Q-polynomial has degree TV —1. Moreover, it is the only connected projection

with crossing number 1. Hence it can be used at the base of some of our inductions.

The paper [BLM] also provides a formula for the Q-polynomial of a link with

composite projection, namely Q(Li #L2) = Q(Li)Q(L2). Note that if deg<3(Li) =

N(p(Li)) - 1 and degQ(L2) = N(p(L2)) - 1, then

degQ(Li #L2) = N(P(Li)) + N(p(L2)) - 2,

while

N(p(Li # L2)) = N(p(Li)) + N(p(L2)).

Thus the restriction to prime projections in our Theorem 2 is necessary. In gen-

eral, the Q-polynomial is unable to distinguish alternating composite links from

nonalternating composite links, as the granny knot and square knot show.

2. The main results.

THEOREM l. Let p(L) be a regular link projection with TV crossing points. Let

K be the maximal length of any bridge in p(L).  Then degQr, < TV — K.

PROOF. We shall prove that the set of projections which violate the theorem is

empty. Among all projections which are counterexamples to the theorem, consider

those with the smallest possible number of crossings and, among those, select a

projection p(L) with a bridge of the longest possible length K. Thus degQz, >

TV — K with TV minimal and K maximal.

Let B be a bridge of length K in p(L). If B is improper, then by Lemma 0 there

is a projection p'(L) with bridge B' such that N(p'(L)) - k(B') < TV -K < degQL

and N(p'(L)) < TV, contradicting the minimality of TV. If K = 0, then p(L)

must be the trivial projection of an unlink, TV = 0, degQi = 0, and this is not a

counterexample to the theorem. We thus have that B is an open segment and if c

is one of its terminal crossings, then the overcrossing segment at c is not a part of

B (see Figure 4).

If we perform the operations of equation (1) using c as site, then the projections

p(Lq) and p(Loo) will have bridges of length at least K and crossing number TV — 1.

Thus deg Ql0 < TV - 1 - K and similarly for Qlx • Let axM be a nonzero term of

Ql = Ql+ with M > TV -K. Then by (1), the xM term of QL_ must be -axM,

since Ql0 and Ql^, even multiplied by x, cannot contribute to a term of degree
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Figure 4

M. But p(L-) has a bridge of length at least K + l, and degQz,. > M > N -K >

TV — (K + 1). Thus p(L-) is a counterexample to the theorem, contradicting the

maximality of K.    G

THEOREM 2. Ifp(L) is a prime, connected alternating projection with TV cross-

ing points, then the coefficient of xN~x in Ql(x) is a positive number.

PROOF. The theorem is true for the "lemniscate" projection of the unknot.

Assume the theorem is true for any projection with fewer than TV crossings. Take

any crossing c in p(L) = p(L+) as site and perform the operatons of (1). Then

as Figure 1 indicates, p(L-) has TV crossings and a bridge of length 3, so that

deg<2z,_ < TV - 3. By (1), the coeffiecient of xN~x in Ql will equal the sum of the

coefficients of xN~2 in Ql0 and Ql^.

Since p(Lq) and p(Loo) are alternating projections and have TV — 1 crossings (see

Figure 1), our induction hypothesis will complete the proof if we can guarantee

that at least one of p(Lr¡), p(Loo) is a prime, connected projection. We prove this

combinatorial lemma in an appendix to this paper.    D

These two theorems apply equally well, and with identical proofs, to the z-degree

of the Kauffman polynomial F (a, x).

We now investigate how the Brandt-Lickorish-Millett-Ho polynomial relates to

the Conway notation for a link. If p(L) is an alternating regular link projection,

a region in R2 — p(L) having just two crossing points on its boundary is called a

clasp. If one applies the operations of (1) to one of the crossings bounding a clasp

(see Figure 5), then in one of the two projections eliminating that crossing (we

shall call it p(Loo)), the clasp is replaced with a trivial loop and at least one other

crossing can be removed from p(Loo ) by a type I Reidemeister move. The switched

projection p(L-) can be simplified by a type II Reidemeister move.

If the original projection-with-clasp p(L+) is alternating, then the other three

projections of formula (1) are, after simplification, alternating with fewer crossings.

We shall call the operation of replacing p(L+) with p(L$) a clasp elimination.

Any link projection having a standard Hopf link factor must be regarded as

exceptional in that two clasps share an edge. p(Lq) and p(Loo) are not distinguished
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unless we specify which clasp we are eliminating. Both projections contain trivial

loops.

LEMMA 3. Let p(L) be a prime, connected alternating projection with TV > 3

crossings and a clasp. If Lq is any link obtained by eliminating a clasp from p(L),

then Ql has the same leading coefficient as Ql0 .

PROOF. By Lemma A of the appendix, p(L0) is a prime, connected alternating

projection with TV - 1 crossings. By Theorem 2, the leading terms of Ql and Ql0

are of the form axN~x and bxN~2 respectively. After the simplifications shown in

Figure 5, the maximum nonzero powers of Qlx and <Ql_ are at most xN~z. By

formula (1), a = b.    □

COROLLARY 4. If a prime, connected alternating link projection p(L) can be

reduced to the Hopf link by a sequence of clasp eliminations, then the leading coef-

ficient of Ql is 2.

PROOF. The value of the Q-polynomial for the Hopf link 2\ (see [BLM]) is
-2x~x + l + 2a;.    D

COROLLARY 5. If L has an alternating projection p(L) which displays L as a

nontrivial arborescent link, then the leading coefficient of Ql is 2.

PROOF. Any "rational tangle summand" of L can be written in Conway's nota-

tion as MiM2 ■ ■ ■ Mp, with the M¿ positive integers. Clasp eliminations can reduce

this tangle to a string of p l's. There is still a clasp between the first two crossings

in this tangle, so that it can be reduced to 1 or 11 as we choose. Doing the same

to any other summand, we arrive at a (2, q) torus link which can be reduced to the

Hopf link.    D

The "algebraic tangles" which close up to arborescent links are the building

blocks of what we call a Conway projection of a link. One starts with a 4-valent

planar graph with all regions having at least three sides (called a basic polyhedron

by Conway), replaces each vertex of the graph by a disk, and embeds an algebraic

tangle into each disk so that arcs match.

COROLLARY 6. If L has a Conway projection which is prime, connected, and

alternating, then the leading coefficient o¡Ql depends only on the basic polyhedron.

PROOF. Each algebraic tangle can be reduced to a single crossing by clasp

eliminations, as in Corollary 5.    D

\

\

P(L+) P(LJ

\

KX
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In Table 1, we provide a list of the leading coefficients of Q-polynomials (for prime

alternating links) for the basic polyhedra used by Conway in his enumeration of

knots and links. It would be interesting to know whether the nontrivial arborescent

links are characterized as those with leading coefficient 2 in their Q-polynomials.

Basic Polyhedron
r
6*

8*

9*

10*

10"

10***

TABLE  1

Leading Coefficient of Ql
2

4

6

8

8

10

8

11* 12

Appendix. A combinatorial lemma.

LEMMA A. Ifp(L) is a prime, connected link projection with a crossing c and

p(Lo) andp(Loo) are the two smoothings ofthat crossing, then at least on ofp(Lo),

p(Loo) is prime and connected.

Figure 6
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PROOF. If p(Lo), p(Loo) were both composite, then there would be separating

simple closed curves Cn and Coo in the plane of the projections. Since p(L) is prime,

these curves must pass through the site where p(L) differs from p(Ln) and p(Loo) as

shown in Figure 6. We name four regions (not necessarily connected) in the plane

complement of Co UCoo : Int Co flint Coo = DR (for down right), Int Co nExt Coo =

DL (down left), Ext C0 Hint Coo = UR (up right), Ext C0 nExt Coo = UL (up left).

The connected components of these regions that have crossing c on their bound-

aries are called DR**,DL**,UR**, and UL**. Let B he a small disk centered at

c that only intersects these four regions, and is such that p(L) intersects dB in

exactly four points. Let DR* = DR** - B, etc.

The unions of segments of Co and Coo are labeled as follows: DR Cl DL =

d, DRnÜR = r, DLnÜL = /, and ÜRnÜL = -it. Note that C0 = r U/, Cœ = uUd.
Any connected component X of the complement of Co U Coo U B must have an

even number of points of p(L) on its boundary. Assume there are crossings of p(L)

inside X. Then the number of points of p(L) on dX must be at least four, or else

dX would form a separation of p(L), which is assumed prime. (X cannot contain

all crossings of P(L), since it does not contain c.) Assume for convenience that

X C UR, so that dX CtiUr. At most one of the segments of p(L) n B that form

crossing c intersects X. Thus dX must contain at least three points of (uUr)np(L).

By the definition of connected sum, Co and Coo each contain two points of p(L)

other than c. Thus it and r each contain at most two points of p(L) — {c}. Let us

suppose that dX contains two points of uC\p(L) and at least one of rC\p(L). Then

d D p(L) = 0 and / n p(L) contains at most one point other that c.

Let Y be any region in IntCo — B = (DL U DR) — B that contains crossings.

(There must be one by the definition of connected sum.) Then as above, dY (lp(L)

must contain at least four points. At most one of these points can be in dY (1 dB

and at most two can be from / or r. (The two can occur only if Y C DR and dX

and dY share an edge.) But since dC\p(L) = 0, dyC\p(L) cannot have four points.

A similar contradiction arises if any other assumption is made about the intersec-

tion of P(L) with u, d, r, and I or if p(Lq) or p(Lœ) is assumed to be disconnected

rather than composite.    D
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