ON A QUESTION OF FEIT

PAMELA A. FERGUSON¹ AND ALEXANDRE TURULL

ABSTRACT. The following theorem is proved: Assume χ is an irreducible complex character of the finite group G and G is π -solvable where π is the set of prime divisors of $\chi(1)$. Then G contains an element of order $f(\chi)$.

Introduction. All groups in this paper are finite. The question referred to in the title is the following: Let χ be an irreducible complex character of a finite group G and let $f(\chi)$ be the smallest positive integer such that $\{\chi(g)|g \in G\} \subseteq Q(\alpha)$ where α is a primitive $f(\chi)$ th root of unity. Does G contain an element of order $f(\chi)$?

By using factorizations of quasi-primitive irreducible characters into products of characters we obtain the following result:

THEOREM. Assume χ is an irreducible complex character of a finite group G and G is π -solvable where π is the set of primes dividing $\chi(1)$. Then G contains an element of order $f(\chi)$.

This theorem yields the following Corollary which was proved independently by Amit and Chillag [1].

COROLLARY. If χ is an irreducible character of a solvable group G, then G contains an element of order $f(\chi)$.

We wish to thank Professor I. M. Isaacs and the referee for carefully reading the original manuscript and making helpful suggestions. In particular, the notation $f(\chi)$ was suggested by Professor Isaacs in honor of W. Feit.

1. We introduce some definitions and notation. Let σ be a nonempty set of primes and h be an element in a group G, h is a σ -element if $\langle h \rangle$ is a σ -group. Any $g \in G$ may be written uniquely as $g = g_{\sigma}g_{\sigma'}$, where g_{σ} is a σ -element, $g_{\sigma'}$ is a σ' -element and both g_{σ} and $g_{\sigma'}$ are powers of g. The elements g_{σ} and $g_{\sigma'}$ are called the σ -part and σ' -part of g.

If Ω is a Galois extension of the field $\Omega_1, G(\Omega/\Omega_1)$ denotes the Galois group of Ω over Ω_1 .

If $\chi \in Irr(G)$ and σ is a set of primes, then χ is σ -special provided that $\chi(1)$ is a σ -number and that for all subnormal subgroups S of G and all irreducible constituents θ of χ_S , the determinantal order $O(\theta)$ is a σ -number.

PROOF OF THEOREM. The result is clear for linear characters so by induction on $\chi(1)$ we assume that the theorem is true for irreducible characters Φ and groups *H* satisfying the hypothesis if $\Phi(1) < \chi(1)$. If $\chi = \Phi^G$ where $\Phi \in \text{Irr}(H)$ and

©1986 American Mathematical Society 0002-9939/86 \$1.00 + \$.25 per page

Received by the editors January 30, 1985 and, in revised form, May 1, 1985.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 20C15.

Key words and phrases. Prime character, π -special character, $f(\chi)$.

¹ Partially supported by a National Science Foundation Grant.

|H| < |G|, then $f(\chi)|f(\Phi)$. Since $\Phi(1)$ is a proper divisor of $\chi(1)$, H contains an element of order $f(\Phi)$ and the theorem follows. Thus, we may assume that χ is primitive.

Let $f(\chi) = \prod_{i=1}^{n} p_i^{a_i}$ where $a_i \ge 1$ and the p_i are distinct primes. Let $p_i^{r_i}$ denote the order of a Sylow p_i -subgroup of G for i = 1, ..., n. Then Ω_i denotes the field of $(|G|/p_i^{r_i-a_i+1})$ th roots of unity over Q. Let Ω be a field of |G|th roots of unity over Q. By the definition of $f(\chi)$, we may choose a $\theta_i \in G(\Omega/\Omega_i)$ such that θ_i does not leave χ invariant for i = 1, ..., n. We first show that no product of an odd number of distinct elements in $\{\theta_1, \ldots, \theta_n\}$ leaves χ invariant. Assume otherwise; then since $G(\Omega/Q)$ is abelian, we may choose notation so that $\beta = \prod_{i=1}^{r} \theta_i$ leaves χ invariant, for some $r \ge 1$.

Suppose $p_i|\chi(1)$ for some i = 1, ..., r. Since $G(\Omega/Q)$ is abelian, we may assume $p_1|\chi(1)$. By [4, Corollary 2.7], $\chi = \chi_1 \Phi$ where χ_1 and Φ are primitive irreducible p_1 -special and p'_1 -special characters. G is p_1 -solvable, hence p'_1 -separable, and so $f(\Phi)$ is a p'_1 -number by [3, Proposition 6.3(a)].

If $\theta \in G(\Omega/Q)$ and σ is any set of primes, then it is direct to see that whenever γ is an irreducible σ -special character so is $\theta \circ \gamma$. Hence $\beta \circ \chi_1$ and $\beta \circ \Phi$ are p_1 -special and p'_1 -special. Now $\chi_1 \Phi = \chi = \beta \circ \chi = (\beta \circ \chi_1)(\beta \circ \Phi)$ and [4, Theorem 2.2] yield $\chi_1 = \beta \circ \chi_1$. By [3, Proposition 6.3(a)], $f(\chi_1)$ is a p_1 -number so $\theta_i \circ \chi_1 = \chi_1$ for $i = 2, \ldots, r$. Since $G(\Omega/Q)$ is abelian, it follows that $\chi_1 = \beta \circ \chi_1 = \theta_1 \circ \chi_1$. Now $f(\Phi)$ a p'_1 -number implies that $\theta_1 \circ \Phi = \Phi$. However, $\theta_1 \circ \chi = (\theta_1 \circ \chi_1)(\theta_1 \circ \Phi) = \chi_1 \Phi = \chi$ contradicts the choice of θ_1 . Therefore, $(\prod_{i=1}^r p_i, \chi(1)) = 1$.

Now set $p = p_1$. By [4, Corollary 2.7], $\chi = \Phi\lambda$, where Φ and λ are irreducible, primitive π -special and π' -special characters. Since $\chi(1)$ is a π -number, λ is linear. As in the previous paragraph, $\beta \circ \Phi$ and $\beta \circ \lambda$ are π -special and π' -special. Thus, $\Phi\lambda = \chi = \beta \circ \chi = (\beta \circ \Phi)(\beta \circ \lambda)$ and [4, Theorem 2.2] imply that $\lambda = \beta \circ \lambda$. Since β fixes λ , β fixes all powers of λ . In particular, β fixes λ_p and $\lambda_{p'}$, where λ_p is the p-part of λ and $\lambda_{p'}$ is the p'-part. It is clear that $f(\lambda_p)$ is a p-number and $f(\lambda_{p'})$ is a p'-number. Hence, $\theta_i \circ \lambda_p = \lambda_p$ for $i = 2, \ldots, r$ and $\theta_1 \circ \lambda_{p'} = \lambda_{p'}$. Since $G(\Omega/Q)$ is abelian, $\lambda_p = \beta \circ \lambda_p = \theta_1 \circ \lambda_p$. By [3, Proposition 6.3(a)], $f(\Phi)$ is a π -number. Thus, $\theta_1 \circ \Phi = \Phi$ and $\theta_1 \circ \chi = (\theta_1 \circ \Phi)(\theta_1 \circ \lambda_p)(\theta_1 \circ \lambda_{p'}) = \Phi\lambda_p\lambda_{p'} = \chi$. Again this is a contradiction. Therefore, no product of an odd number of distinct θ_i leaves χ invariant. Hence, by [2, Theorem 2], there is an element $g \in G$ such that $\chi(g) \notin \Omega_i$ for any $i = 1, \ldots, n$. Thus, $f(\chi) ||\langle g \rangle|$.

REFERENCES

- 1. G. Amit and D. Chillag, On a question of Feit, Pacific J. Math. (to appear).
- 2. R. Brauer, A note on theorems of Burnside and Blichtfeldt, Proc. Amer. Math. Soc. 15 (1964), 31-34.
- 3. D. Gajendragadkar, A characteristic class of characters of finite π -separable groups, J. Algebra 59 (1979), 237–259.
- 4. I. Isaacs, Primitive characters, normal subgroups, and M-groups, Math. Z. 177 (1981), 267-284.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MIAMI, CORAL GABLES, FLORIDA 33124