ON A QUESTION OF FEIT

PAMELA A. FERGUSON ${ }^{1}$ AND ALEXANDRE TURULL

Abstract

The following theorem is proved: Assume χ is an irreducible complex character of the finite group G and G is π-solvable where π is the set of prime divisors of $\chi(1)$. Then G contains an element of order $f(\chi)$.

Introduction. All groups in this paper are finite. The question referred to in the title is the following: Let χ be an irreducible complex character of a finite group G and let $f(\chi)$ be the smallest positive integer such that $\{\chi(g) \mid g \in G\} \subseteq Q(\alpha)$ where α is a primitive $f(\chi)$ th root of unity. Does G contain an element of order $f(\chi)$?

By using factorizations of quasi-primitive irreducible characters into products of characters we obtain the following result:

ThEOREM. Assume χ is an irreducible complex character of a finite group G and G is π-solvable where π is the set of primes dividing $\chi(1)$. Then G contains an element of order $f(\chi)$.

This theorem yields the following Corollary which was proved independently by Amit and Chillag [1].

COROLLARY. If χ is an irreducible character of a solvable group G, then G contains an element of order $f(\chi)$.

We wish to thank Professor I. M. Isaacs and the referee for carefully reading the original manuscript and making helpful suggestions. In particular, the notation $f(\chi)$ was suggested by Professor Isaacs in honor of W. Feit.

1. We introduce some definitions and notation. Let σ be a nonempty set of primes and h be an element in a group G, h is a σ-element if $\langle h\rangle$ is a σ-group. Any $g \in G$ may be written uniquely as $g=g_{\sigma} g_{\sigma^{\prime}}$, where g_{σ} is a σ-element, $g_{\sigma^{\prime}}$ is a σ^{\prime}-element and both g_{σ} and $g_{\sigma^{\prime}}$ are powers of g. The elements g_{σ} and $g_{\sigma^{\prime}}$ are called the σ-part and σ^{\prime}-part of g.

If Ω is a Galois extension of the field $\Omega_{1}, G\left(\Omega / \Omega_{1}\right)$ denotes the Galois group of Ω over Ω_{1}.

If $\chi \in \operatorname{Irr}(G)$ and σ is a set of primes, then χ is σ-special provided that $\chi(1)$ is a σ-number and that for all subnormal subgroups S of G and all irreducible constituents θ of χ_{S}, the determinantal order $O(\theta)$ is a σ-number.

Proof of Theorem. The result is clear for linear characters so by induction on $\chi(1)$ we assume that the theorem is true for irreducible characters Φ and groups H satisfying the hypothesis if $\Phi(1)<\chi(1)$. If $\chi=\Phi^{G}$ where $\Phi \in \operatorname{Irr}(H)$ and

[^0]$|H|<|G|$, then $f(\chi) \mid f(\Phi)$. Since $\Phi(1)$ is a proper divisor of $\chi(1), H$ contains an element of order $f(\Phi)$ and the theorem follows. Thus, we may assume that χ is primitive.

Let $f(\chi)=\prod_{i=1}^{n} p_{i}^{a_{i}}$ where $a_{i} \geq 1$ and the p_{i} are distinct primes. Let $p_{i}^{r_{i}}$ denote the order of a Sylow p_{i}-subgroup of G for $i=1, \ldots, n$. Then Ω_{i} denotes the field of $\left(|G| / p_{i}^{r_{i}-a_{i}+1}\right)$ th roots of unity over Q. Let Ω be a field of $|G|$ th roots of unity over Q. By the definition of $f(\chi)$, we may choose a $\theta_{i} \in G\left(\Omega / \Omega_{i}\right)$ such that θ_{i} does not leave χ invariant for $i=1, \ldots, n$. We first show that no product of an odd number of distinct elements in $\left\{\theta_{1}, \ldots, \theta_{n}\right\}$ leaves χ invariant. Assume otherwise; then since $G(\Omega / Q)$ is abelian, we may choose notation so that $\beta=\prod_{i=1}^{r} \theta_{i}$ leaves χ invariant, for some $r \geq 1$.

Suppose $p_{i} \mid \chi(1)$ for some $i=1, \ldots, r$. Since $G(\Omega / Q)$ is abelian, we may assume $p_{1} \mid \chi(1)$. By [4, Corollary 2.7], $\chi=\chi_{1} \Phi$ where χ_{1} and Φ are primitive irreducible p_{1}-special and p_{1}^{\prime}-special characters. G is p_{1}-solvable, hence p_{1}^{\prime}-separable, and so $f(\Phi)$ is a p_{1}^{\prime}-number by [3, Proposition 6.3(a)].

If $\theta \in G(\Omega / Q)$ and σ is any set of primes, then it is direct to see that whenever γ is an irreducible σ-special character so is $\theta \circ \gamma$. Hence $\beta \circ \chi_{1}$ and $\beta \circ \Phi$ are p_{1}-special and p_{1}^{\prime}-special. Now $\chi_{1} \Phi=\chi=\beta \circ \chi=\left(\beta \circ \chi_{1}\right)(\beta \circ \Phi)$ and [4, Theorem 2.2] yield $\chi_{1}=\beta \circ \chi_{1}$. By [3, Proposition 6.3(a)], $f\left(\chi_{1}\right)$ is a p_{1}-number so $\theta_{i} \circ \chi_{1}=\chi_{1}$ for $i=2, \ldots, r$. Since $G(\Omega / Q)$ is abelian, it follows that $\chi_{1}=\beta \circ \chi_{1}=\theta_{1} \circ \chi_{1}$. Now $f(\Phi)$ a p_{1}^{\prime}-number implies that $\theta_{1} \circ \Phi=\Phi$. However, $\theta_{1} \circ \chi=\left(\theta_{1} \circ \chi_{1}\right)\left(\theta_{1} \circ \Phi\right)=\chi_{1} \Phi=\chi$ contradicts the choice of θ_{1}. Therefore, $\left(\prod_{i=1}^{r} p_{i}, \chi(1)\right)=1$.

Now set $p=p_{1}$. By [4, Corollary 2.7], $\chi=\Phi \lambda$, where Φ and λ are irreducible, primitive π-special and π^{\prime}-special characters. Since $\chi(1)$ is a π-number, λ is linear. As in the previous paragraph, $\beta \circ \Phi$ and $\beta \circ \lambda$ are π-special and π^{\prime}-special. Thus, $\Phi \lambda=\chi=\beta \circ \chi=(\beta \circ \Phi)(\beta \circ \lambda)$ and $[4$, Theorem 2.2$]$ imply that $\lambda=\beta \circ \lambda$. Since β fixes λ, β fixes all powers of λ. In particular, β fixes λ_{p} and $\lambda_{p^{\prime}}$, where λ_{p} is the p-part of λ and $\lambda_{p^{\prime}}$ is the p^{\prime}-part. It is clear that $f\left(\lambda_{p}\right)$ is a p-number and $f\left(\lambda_{p^{\prime}}\right)$ is a p^{\prime}-number. Hence, $\theta_{i} \circ \lambda_{p}=\lambda_{p}$ for $i=2, \ldots, r$ and $\theta_{1} \circ \lambda_{p^{\prime}}=\lambda_{p^{\prime}}$. Since $G(\Omega / Q)$ is abelian, $\lambda_{p}=\beta \circ \lambda_{p}=\theta_{1} \circ \lambda_{p}$. By [3, Proposition 6.3(a)], $f(\Phi)$ is a π-number. Thus, $\theta_{1} \circ \Phi=\Phi$ and $\theta_{1} \circ \chi=\left(\theta_{1} \circ \Phi\right)\left(\theta_{1} \circ \lambda_{p}\right)\left(\theta_{1} \circ \lambda_{p^{\prime}}\right)=\Phi \lambda_{p} \lambda_{p^{\prime}}=\chi$. Again this is a contradiction. Therefore, no product of an odd number of distinct θ_{i} leaves χ invariant. Hence, by [2, Theorem 2], there is an element $g \in G$ such that $\chi(g) \notin \Omega_{i}$ for any $i=1, \ldots, n$. Thus, $f(\chi)||\langle g\rangle|$.

References

1. G. Amit and D. Chillag, On a question of Feit, Pacific J. Math. (to appear).
2. R. Brauer, A note on theorems of Burnside and Blichtfeldt, Proc. Amer. Math. Soc. 15 (1964), 31-34.
3. D. Gajendragadkar, A characteristic class of characters of finite π-separable groups, J. Algebra 59 (1979), 237-259.
4. I. Isaacs, Primitive characters, normal subgroups, and M-groups, Math. Z. 177 (1981), 267-284.

[^0]: Received by the editors January 30, 1985 and, in revised form, May 1, 1985.
 1980 Mathematics Subject Classification. Primary 20C15.
 Key words and phrases. Prime character, π-special character, $f(\chi)$.
 ${ }^{1}$ Partially supported by a National Science Foundation Grant.

