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EQUICONVERGENCE OF MATRIX TRANSFORMATIONS

K. A. JUKES

Abstract. Equiconvergence of matrix transformations is related to the

existence of Tauberian constants. Agnew's result on the equiconvergence of

Cesàro and Riesz means is shown to be best possible. Finally, equiconver-

gence of equivalent arithmetical summation methods related to the prime

number theorem is investigated.

1. Introduction. Agnew [1, Theorems 3.1, 4.1] showed directly that, for

r > 0, the Cesàro and Riesz transforms

^-)-(-rri0(";*rK
Rr(n)= ^(l-k/n)rak,

k = 0

of a given series "2ak are equiconvergent, i.e. Cr(n), Rr(n) exist for each n and

limn_>00{Cr(n) - Rr(n)} = 0, whenever either an -»0, or "2,"k=0kak = 0(n +

1), as n -> co. It is well known that the two transforms are equivalent in the

sense that the convergence of either implies that of the other to the same

limit. What is of interest is that, whether or not either transform converges,

the transforms are equiconvergent for a wide class of series, a point which

does not follow from classic facts about the Cesàro and Riesz transforms.

Agnew's results exemplify two means of deducing equiconvergence from

results on the existence of Tauberian constants.

Write

B„ (a) = 2 bnkak,       C„ (a) = 2 c„kak,       A(ank) = ank - ank+ „

where (ank), (b„k), (cnk) are three given matrices, and suppose (g(n)) is a

complex sequence satisfying g(n) ^ 0 for each n.x

Maddox [7] (see also Jukes [3, p. 748]) proved

Theorem Ml. B„(a), C„(a) exist for each n and there is a constant Mx such

that

lim sup |5n (a) - C„(a)|< MXAX
n

whenever
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A , = lim SUp | g(«)c7„| < 00

// and only if

(2)b,nk '-nk 0 as n -» oo for each k,

(3) 2(|6J + \cj)/\gik)\ < œfor each n,
and

(4) D = lim sup 2 <  00.

Further, when (2)-(4) hold we may take Mx = D, and this is then best possible.

Theorem M2. Bnia), C„(a) exist for each n and there is a constant M2 such

that

(5)

whenever

lim sup \B„ (a) - C„ (a)| < M2A2

A2 = lim sup
kat

k-o in + 1)
< oo

if and only if

(6) \bnk\ + Ic«í;I -^ 0 as A; —» oo /or eac/i n,

(7) ¿>n4 — cn/t -» 0 as n -» oo /or eacA /c,

(8) 2ki\Aibnk/k)\ + |A(c„,//V)|) < ^o/or each n,

and

(9) D = lim sup 2 /:
<^)

<  00.

IfTie/i (6)-(9) ZioW, Af2 = D ù best possible.

Trivially the transforms Bnia), Cnia) are equiconvergent if both exist when

A¡ < oo and either M¡ = 0 or M¡ exists and A¡ = 0.

In fact the existence of B„ia), C„(a) together with M2 = 0 is clearly both

necessary and sufficient for equiconvergence whenever A2 < oo. Agnew's

second result supplies an example of this feature. More surprisingly, we have

Theorem 1. Equiconvergence whenever Ax = 0 is equivalent to the existence

of Tauberian constants whenever Ax < oo.

Proof. Conditions (2) and (4) are necessary and sufficient for the matrix

Hbnk - cnk)/gik)) to map c0 into c0, while (3) is necessary and sufficient for

the existence of Bnia) and C„ia) whenever iakgik)) E c0. Thus equiconver-

gence whenever A, = 0 occurs if and only if (2)-(4) hold.

Using Theorem 1 we can obtain Agnew's first result and show that it is in a

sense best possible. We shall also investigate equiconvergence of certain

arithmetical summation methods connected with the prime number theorem.

In particular, we examine Ingham's method and the method (Z>, u2(«)/rt), the

equivalence of which, up to a factor of 6/t72, was shown in [4, p. 702].
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2. Cesàro and Riesz means.

Theorem 2. Let r > 0. The Cesàro and Riesz transforms (1) are equiconver-

gent whenever naa„ -» 0 if and only if a > 0.

Our proof makes use, for real z, of the following formula for the quotient of

two gamma functions:

T(z + a) I        (a- b)(a + b - 1)
(10) .[ =za-»\l + y + f2 }(I + 0(z-%T(z + b)

where |arg z\ < tt - e (e > 0) and C = C(a, b) is a constant (see, e.g. Luke

[6, p. 33, equation (11)]). With z = n, a = r+l,b=l this gives

01)

T(n + r + 1)

T(« + 1) ('♦^♦$)0 ♦*<--»
«r   1 +

r(r +1)       r      Z>„
1+    V0     ' +4 + ^

2« „2 „3

where D„ = 0(1). In particular, there exist bounded sequences (Ak), (Bk)

such that

T(n + r + 1)

(12)    n« + o
as stated in [1,(3.11)].

Proof of Theorem 2. Write

T(r + n - k + 1)      T(« + 1)

= "'(1 + t)-"'(i + t)"    o-«.*-)■

»--1

£\»¿- —

T(n- k+ 1)      T(r + « + 1)

0

(0 < k < /j),

(* > «),

L,.A

(1 - k/n)r    (0 < k < n),

0 (k > n).

Then for k < n,

<--(-£)'('♦ £| )(■ 4 )•
so (2) is satisfied. Taking g(0) = l,g(A:) = ka (k > 1), (3) is trivially satis-

fied. If a > 0 then

A=0

Jnk Lnk

g(k)

n-\

k=\

[x-h. \[ A"~k + h + A"-kB" \
\        n ) \ n - k       n       (n - k)n J

+
T(r + l)T(n + 1)

naT(r + n + 1)

n-\

= o\-t? 2(«-*r' +°o)
k=\

= 0(1)
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as n —* oo, whence equiconvergence follows. If a < 0 then by (11) and (12),

for n sufficiently large,

2
A: = 0

bnk - Cnk

g(k)

2     k-°
I <k<n/2

Tir + n - k + 1)       I\r + n + 1)

Tin - k + 1) r(n + 1)« + 1)     I        « /
nril + 4,/«)

>¿7      2     A-"(«-A:)r

^"     l</t<n/2

r(r + 1)
1 + ^-rr  ■

D„

2(n - k)       („ _ ,t)2      („ - A:)3

r(r +1)       r        Dt--^-- + 4 +

-¿« KK«/2

r(r + 1)

1

+ C
(^

2«

nD„

n2       n3

in - k)Dn

A      „(„ - A) /      („ _ kfk

r-i'(r+l)

n2k

>■

r(r + 0 / n V
8nr+x   V 2 ^

r(r+ 1)    ,_,

i

8« r+\

2 *,_*       (r>\),
\<k<n/2

2 A'~a     (0<r<l)
1 <,k <n/2

-» oo    as n —» oo,

completing the proof.

Agnew's proof of (12) would seem to require a stronger form of Stirling's

formula than the usual n\ = \Í2m a." + 1/W(',), where 0(n) = o(l). For

positive integers r, both this approach and use of (10) can be avoided by the

following simple argument:

n     / (« + /-)!       \        (« + !).   .(« + /■)-«'

0 <    -j—-\\n = -
\     n\n / ,r-\

in + r)r - n'
rx r-\

in < x < n + r)

r(« + r)r

< ,_,        =0(0
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as n -> oo. A similar use of the mean value theorem also simplifies the

required estimate in the case a < 0 when r is a positive integer.

3. Arithmetical summation methods. Let h(n) denote a real-valued function

on the positive integers with h(l) = 1. A series £ï°a„ is called (D, h(n))-sum-

mable to the sum A if

1    "
1™  -  2 kak   2   rh(r) = A.

"-00   "   *=1 r<n/k

Ingham's method (I) is given by h(n) = l/n. Consider the (D, \i2(n)/ri) and

6(1)/ m2 transforms given by

(13) b„k = -    2j    M (r).      c„k = — -
"   r<n/k -ïï      n

respectively, where [x] denotes the integer part of x.

Theorem 3. The (D, ¡i2(n)/n) and 6(l)/ir2 transforms are equiconvergent

whenever naan -> 0 if and only if a > 1.

Proof. Taking g(k) = k", (3) is trivially satisfied for any a, while (2)

follows from the well-known estimate

(14) Q(x) = I, /i2(r) = 6x/^2+0(V )
r<x

for the square-free numbers (see, e.g., Hardy and Wright [2, Theorem 333]).

Further,

n     Jbi-'S..^-«.!-2'^ - ¿--2'--'r../.-i-

(15)
Ar=l

kn-xZr<n/kn2(r)-6TT-2kn-x[nk-x]

ka

l-5- S *1/2_a

If a > 1 then S = 0(1), while for a < 1,

n/2<k<n       n       \ TT    I

oo     as « —» 00.

For these transforms, if a > 1 the Tauberian constant Af,, in fact, exists as

a limit.

Theorem 4. Z¿?f g(Jt) = /ca, a > 1. Then, for the (D, fi2(n)/n) and 6(I)/V

fra/jj/omw,

Af, =

0

J0 \ X J IT2  [  X

(a > 1),

dx    (a = 1)

(the convergence of the integral following from (14)).

Proof. If a > 1, Af, = 0 follows from (15). If a = 1 we have the Riemann
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sum

*-i.>(í)-¿[í

whence the result.

A similar calculation follows if we compare the (£), p\n)/n) transform

with the factored partial sum given by

Cnk  =

6/V     (1 < A < n),

v 0 (A > n),

the resulting Tauberian constant Mx being

0 (« > 1),

A/,=

lWx)-->Jo      \ x /      <n
dx    (a = 1).

In the case of (I) and partial sums we showed [3, Theorem 4] that

Mx = 1 - y, where y is Euler's constant. The integral

(16) fQ(\)-^äx■>0        V X / ttZX

can be explicitly evaluated. However, Stark [8] showed that 0(1/x) - 6/7r2x

changes sign infinitely often as x -» 0 +. Though this fact prevents direct

explicit evaluation of Mx above, the evaluation of (16) is of some interest. The

following version, shorter than my own, was kindly suggested by the referee:

Write Mix) = Sn<xu(/i). Now

r'e(i)__s_ *-/"«*_ A*.

But

_t_

d2
Q(')=   2    Ad)

d< y/t

(see the proof of [2, Theorem 333]), whence

d2''I « "'I       '       d<y/t

- 2 "W>r-H-7

= 2 P(d)   Md* M

rf<V    ^ /

dt

du

= 2 M<0
d<\/n , k<.n/d-

1
A t/2

Since
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and

then

Q(t)

Sj = iog, + y + o(I)

f*(¿)

,1,^-vMU

Jx t2 ^t n-
= lim

0(0
í/f

1    f"
log/I

= lim
n—»oo

2   -V(y-21og¿)
d< V"

2  m(<0
</< y ti2

+ 0(1)

Thus, by [2, §17.7],

6y         »    M¿)log¿      ..      I  _, .
= — -22  -Ö-„i™ - Q(n)

6 »    /i(rf)log J
= -(y-l)-2 2  -5-.

/'«(i)-i*-4<r-o-s!!¥.M»....
•'o      V * /       w2* W2 7T rf»i    dz

Concerning equiconvergence whenever A2 < oo, first note

Theorem 5. Tauberian constants M2 do not exist for comparisons of con-

servative matrices with nonconservative matrices.

Proof. Suppose (5) holds whenever A2 < oo, where (bnk) is a conservative

matrix. Now ~Zak convergent => kak ->0(C, l)=>yf2 = 0=> 5„(a) - Cn(a)

—> 0. But ~2ak convergent => lim„5n(a) exists and so (cnk) is conservative.

Since (I) and (D, ¡i2(n)/n) are not conservative, then for comparisons with

conservative methods, equiconvergence whenever A2 < oo is false. Further, in

contrast to Agnew's result for Cesàro and Riesz means,

Theorem 6. The (D, n\n)/n) and 6(I)/tt2 transforms are not equiconvergent

whenever A2 < oo.

Proof. With (bnk), (cnk) as in (13), (6)-(8) are satisfied. However,

2*
k = \ ^)

= 2 *
k-1 "

2 (M2(r)-6/,r2)
«/(*+ !)<;•<«/*:

>
1

|u2(r)-6/^2|,
V"<*:<"    n/(k+\)<r<n/k
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since for A > yjn the interval (n/(A + 1), n/k] contains at most one integer.

Each integer r < y n - 1 falls in exactly one such interval, and then

| /a2(r) - 6/v72| > 1 - 6/V   and   k > n/r - 1.

Hence, the last sum is

(1 - 6/V)
>-      2     (n/r— l)->oo    as «-»oo.

" /-<y«-i

4. Dirichlet inverse methods. The inverse of hin) under ordinary Dirichlet

convolution is denoted by h*in) and is the (unique) solution of the equations

^hir)h*in/r)=\X     f" = ^
%   W   W }      [0    (ifn^l).

In [4, Theorem 1] we gave necessary and sufficient conditions for (D, hx(n))

E (D, h2(n)), i.e. for every (D, /i-,(w))-summable series to be (D, h2(n))-sum-

mable.

Theorem. Let

Uhy,h2) = ^h*x(r)h2(d/r).
rid

Then (D, hx(n)) c (D, h2(n)) if and only if

m

m

2n
n=\

(    2    d<bd(hx,h2)
\ d< m/n

< <x>,

ti™m^oo(n/™WZd<m/„d<l>d(hx, h2)) exists (each n), and

limm_x^ =x(d/m)[m/d]<pd(hx, h2) exists, the difference operator A acting

on the variable n.

Since <t>d(hx, h2) = <pd(h*, h*), it follows that (D, hx(n)) c (D, h2(n)) if and

only if (D, h*(n)) c (D, h*(n)). In particular, the corollary to [4, Theorem 1]

yields

Theorem 7. (i) 2ak = A(D, p(n)/n) => lak = ^tt2/6 (D, X(n)/n).

(ii) 2ak = A(D, X(n)/n) =>lak = 6^/tt2 (D, n(n)/n).

Concerning equiconvergence of these last transforms we have

Theorem 8. if) Let a > 1. Then with hin) = A(«)/n or u(«)/«,

*X^o^2% = o(ö,/i(4

(ii) The (Z), p.in)/n) and (Z), 6Xin)/ir2n) transforms are equiconvergent

whenever k"ak —> 0, // and only if a > 1.

Proof, (i) Let

Kk = b^-    2   rh(r).
"       r<n/k
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It suffices to show (bnk) maps c0 to c0. First bnk -» 0 as n -» oo (each k) since

M(x)= 2  /i(«) = 0(x/log2x),   andL(x) = 2 A(«) = O^/log2*)
n <x n<.x

(see, e.g. Landau [5, §§157, 167]), these estimates being equivalent to the

prime number theorem with an error term. Further,

2W<;   2
k=\

= O

k<n/2

1

2   rh(r)
•<n/k

+ 0(1)

n ktn/2 klog2(n/k)

1       ^       (n/k     dt
-°ijj,

k<n/2J2 l0g2f

+ 0(1)

+ 0(1)

= 0ilf"rj 2 i*)+ o(i)-oo).
\ n h   log2? *<„/,       /

(ii) If a > 1, equiconvergence follows trivially from (i). If a < 1,

Í    Ç    S   (/i(r)-6X(r)A2)
*-l r<n/*

>-       2      kx~a(l -6/tt2)^oq    asn^oo.
"   n/2<k<n

For any a, equiconvergence whenever fcau¿ —> 0 fails for comparisons of the

(D, fi(n)/n) or (D, X(n)/n) transforms with any nonzero multiple of partial

sums, since (2) fails. (Alternatively for a < 1, this follows from Theorem 8(i)

since naan -» 0 ^ convergence (to 0) of 1,ak.) Again, for comparisons of the

(D, n(n)/n) or (D, X(n)/n) transforms with any conservative method,

equiconvergence whenever A2 < oo fails. This follows from Theorem 5 since

Theorem 9. The methods (D, ¡i(n)/n), (D, X(n)/n) are not conservative.

Proof. Necessary and sufficient conditions for (C) c (D, h(n)) were given

in [4, Theorem 2], the main condition being

1    £
sup —  2,

m    m  __n = \

iln   2    dh(d)\
\   d<m/n I

But

]_
m

m .      m

2 \A(nM(m/n))\>± 2
n=\ n=\

<  00.

Ád) 0(1)

m

= 2
d<\/m

2 2
Vm<n<m   m/(n+\)<d<m/n

fl(rf)

m/(n+ \)<d<m/n

(m/d-l)\n(d)\-0(l)

1
0(1) >    2 -0(1)-* oo    asm-»oo.

p pnrae
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Finally,

Theorem   10.  The (D, ¡i(n)/n) and (D, 6X(n)/tr2n) transforms are not

equiconvergent whenever A2 < oo.

Proof.

kn~xM(nk~x) - 6tr-2kn-xL(nk-x) "

2*
k=\ A

(A + l)n-xM(n(k + 1)_I) - 67r"2(A + l)n~xL{n(k + 1)_1)

= 2 *
k-\ n

A + 1

2 i,i(r)-6X(r)/Tr2)
n/(k + \)<r<n/k

oo    as n —» oo

by the argument of Theorem 6, whence (9) fails.

I am very grateful to the referee for his suggestions which have led to

improvements in the manuscript.
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