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COMPLEMENTARY COMPONENTS OF
POLYNOMIAL HULLS1

RICHARD F. BASENER

Abstract. Let A' be a compact subset of the unit sphere 5 in C", n > 1. It is

shown that if a point z is not in the polynomially convex hull of X, then

there is a complementary component U of X in 5 such that z is not in the

hull of S \ U.

Alexander [1] has demonstrated several consequences of Browder's Theo-

rem that H'(X) = 0 when A is a polynomially convex subset of C" and

i > n. One of these is that the polynomially convex hull of a compact subset

of a sphere (in C, n > 2) has the same number of complementary compo-

nents inside the sphere as the set itself has on the sphere. Here we use this

result to further elaborate the role of complementary components in de-

termining the hull of such a set.

Fix n > 2 and let S = (z E C": \z\ = (S,\zj\2)x/2 = 1), B = {z G C: \z\ <

I). For a compact subset X of C, let A denote the polynomially convex hull

of X. For Y G C, Y is the closure of Y and 3 y is the boundary of Y relative

to C". If Y G S, ds Y will denote the boundary of Y relative to S.

Our main result is:

Theorem. If Ux, . . . , UN (\ < A < ex) are disjoint open subsets of S, then

(s\ uUjY= n(s\ Uj)\

Thus in order to compute the hull of a subset A of S, it is sufficient to be

able to describe the hulls of subsets of S with connected complements, for we

can now write A = n (S \ Ujf, taking Ux, U2, . . . to be the components of

S \ X. Before proceeding to the proof we mention some immediate con-

sequences.

Corollary 1. Suppose that Ax, . . . , AN (1 < A< oo) are disjoint open

"spherical caps", i.e., for each j there is a Zj E S and an eJy 0 < e- < 2, with

Aj = {z G S: \z - Zj\ < ej}. Then

(S \ U A,-)" = linear convex hull (S \ IJ A,-).

Proof. For eachy, (5 \ A7)"= linear convex hull (5 \ A,-).
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Corollary 2. // A' is a compact subset of S and if none of the complemen-

tary components of X extend over more than a hemisphere of S, then 0 E X.

Proof. If H is an open hemisphere of S, then 0 E (S \ H)~.

Corollary 3. If T is a compact totally disconnected subset of S, then

(S\ T)'= B\ T

Proof. Let x E B. Choose e > 0 so that for any spherical cap

A = (n E S: |tj - z\< e}

with z E S, x E (S \ A)". Cover T by such sets A,,. . ., A^. Since T is totally

disconnected, there are disjoint open subsets of S, say Ux, . . ., UN, with

Uj E A7 for each j and with Í7, still covering T. Then X = S \ U t/7 is a

compact subset of S \ T, and from the theorem x E X. Thus x E (S \ T)".

The main result needed to prove the theorem is the following lemma, which

makes essential use of Alexander's result.

Lemma. If X is a compact subset of S, then dX n B C [3SAT.

Proof. If the lemma is false, then there is a compact set X E S, a point

x E dX n B, and a polynomial/» with

p(x) =1 + 5,       S > 0;

\p\ < 1    on dsX.

We will show that this leads to a contradiction.

Let K = (z E S\ \p(z)\ < 1 + 5/2), and note that dsX E K. Let F be the

component of B \ K which contains x. From the proof of Theorem 3 in [1], it

follows that there is a unique component U of S \ K for which U r\ V ¥= 0.

Since U is connected and U E S \ K E S \dsX, either UEX or UES\

X. We consider these two possibilities separately.

Case I. Suppose U E X. Let z E V. Let W = {r, E C": p(t\) = p(z)}. By

the maximum principle for analytic varieties, we have that for all polynomials

q, \q(z)\ < m&xwniv\q\. But dV E Ü u {n E B: \p(r¡)\ = 1 + 8/2), whence

|<7(z)| < max¿7|67| < max^|c7|. Thus x E V E X; but this contradicts x E dX.

Case II. Suppose U E S \ X. Let L = X n V, and let m = maxL \p\.

Since x E L, m > 1 + 5. Choosey E L such that \p(y)\ = m, and let

T={zEL:p(z)=p(y)}.

Observe that T E X n V, since \p\ > 1 + 5 on T while dV E Ü U [z E B:

\p(z)\ = 1 + 5/2} and X n Ü EdsX where \p\ < 1. But then T is a local

peak set for P(X), hence a peak set for P(X), which contradicts T E V E B.

Proof of Theorem. Observe that it suffices to prove the theorem for the

case N < oo, since the infinite case can be obtained from the finite one by

taking a decreasing intersection. It is trivial that (S \ U U)"Q f) (S \ Uj)~.

To prove the reverse inclusion it is evidently sufficient to show that x

E 3 [ D (5 \ Uj)"] n B implies x E (S \ U Uff. Since N < oo, there is somey
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for which x E 3 [(S \ Uj)~] n B, so by the lemma x G [ds(S \ Uß]'. Since the

Uj are disjoint, ds(S \ Uj) G S \ U Up so x E (S \ U Uj)~ as desired.
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