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A well-known theorem states that if a stochastic matrix (definition

below) of finite order has all positive entries in it, then the sequence

of its powers (or iterates) converges to a limit; see [3, p. 173]. In this

paper we will give a new proof of this result using elementary ideas

from the theory of partially ordered linear algebras. Our proof does

not use the internal structure of the given matrix; therefore, it can

be applied to nonnegative operators.

The basic definition of a partially ordered linear algebra (pola) is

as follows. A pola A is first of all a linear algebra with real numbers

as scalars. Real numbers will usually be denoted by small Greek

letters. Multiplication of elements of A is assumed to be associative,

but not necessarily commutative. Next, the linear algebra A is a

partially ordered set subject to the following conditions (x, y, z denote

arbitrary elements of A and a denotes an arbitrary real number under

the specified restrictions in each condition):

(a) if x^y, then x+z^y+z;

(h) ii 0=x and Ogy, then Ogxy;

(c) ii 0=a and O^x, then O^ax;

(d) for any xEA there exists y ^ 0 and zS; 0 such that x = y — z.

We may also introduce a form of order completeness described as

follows. The pola A is said to be Dedekind a-complete if it satisfies

the following condition: if {x„} is a sequence of elements from A

such that X]^x2^ • • • 2:0, then inf{x„} exists. See [4, pp. 9-11].

Of course, inf{x„} denotes the infinum (greatest lower bound) of

the sequence {xn}. It is defined as follows: inf{x„} =x means that

(1) x = x„ for all n;

(2) ii y^x„ for all n, then y^x.

We now introduce a concept of order convergence: a sequence

{y„} of elements from A is said to order converge to yG-<4 if and only

if there exists a sequence {z„} oi elements from A such that Zx^z2

= • • • SiO, inf {zn} =0, and — zn^yn— y^zn ior all n. In this case

we write o-lim yn =y.

In general, multiplication is not continuous with respect to order

convergence; see [2]. We say that multiplication is continuous if the

following holds: for every sequence {x„} such that xisix25: • • • =0

Received by the editors March 12, 1969.

1 This research was supported in part by the National Science Foundation.

401



402 R. E. DeMARR [November

and inf {x„} =0 and for every y 3:0 we have inf {x„y| = inf {yx„| =0.

The reader may find more basic information on partially ordered

sets, etc., in [l] and [5].

If m is a fixed positive integer and if A denotes the real linear alge-

bra of all matrices of order m with real entries, then A can be regarded

as a pola as follows. If xEA and yEA, where x = [a,-y] and y = [/3,-y],

than xf^y means that a<yg/8y for all i,j. It is easy to show that in A

multiplication is continuous. A stochastic matrix [a,-y] is one such

that a.y^O for all i, j, = 1, • • • , m and s.7L, aa=l for all i=l,

■ ■ ■ , m. Now suppose x= [atj] is a stochastic matrix with a,y2:5>0

for all i, j. It is easily seen that 0^xn^5-1x for all w. It turns out

that this is all that is needed to prove that o-lim x" exists. One can

easily construct other kinds of nonnegative matrices which satisfy

this condition. By referring to [2] the reader will see these ideas can

be applied to bounded operators on a real Banach space. We now

prove the main theorem.

Theorem. Let A  be a partially ordered linear algebra  which is

Dedekind a-complete. If xEA and if for some 0^1 we have O^xn^0x

for all n = l, 2, ■ ■ ■ , then o-lim xn = u exists.   Also, 0^u2^u. If, in

addition,  we assume  that multiplication  is continuous,  then u=u2

= xu=ux.

Proof. We begin by defining Xi=/3 and then by induction Xn+i

= X„(1+Xi)(\i+A„)-1 for all n= 1, 2, • • • . This latter expression can

be rewritten X„+i = l+Xi(X„ — l)(Xi+X„)_1 which means that since Xi

= /3=g 1, we haveX„^ 1 for all w. Consequently, we see that 0^X„+i —1

^XiU+Xi)-1^,,-!) for all w. If we put a = 0(l+0)~l<l, then we

can show by induction that X„ — 1 ̂ an~1(0 — 1) for all n.

We now show by induction that for each n we have x*gABx" for

all k^n. The assumption in our theorem states that this is true if

n = l. Now suppose that for some n=p^l we have xk^\pxp for all

k^p. Take any q^p and define r = q + l— p^l. Now note that 0

^(Xix-xr)(XpXp-x«) or (Xi+Xp)x«+1^XiXpXp+1+x9+r, which is ob-

tained from the previous inequality after multiplying and using the

fact that r+p = q + l. Now sinceq+r — l^p, we see that x9+r_1^Xj,xp

which means that x5+r^XpXp+1. Therefore,

(Xi + \„)x«+1 g (\i\, + X,)*^"1,

which means that x9+1^Xp+iXp+1 for all q + ltp + 1. This completes

the proof by induction.

Now let us define zn = uanx and yn — xn+zn, where p = (0 — 1)(1+0)2-

It  is  clear  that Zi^z2^  ■ • • ^0  and   inf{z„} =0.   We  note  that
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zn — z„+i = a"_,(8(|8 — l)x, which can easily be computed by recalling

that a=/3(l+J8)-1. Now 0 = X„x"— xn+1 = x" — xB+1+(X„ — l)x"^x"

— xn+1+an~1(8 — l)/3x=x" — xn+1+zn — zn+1=yn— yn+i- Consequently,

yi=Sy2£^ • • • fiO. Since A is Dedekind <r-complete, we know that

« = inf {yn} exists. It is easy to show that — z„_xn — u^y„ — u for all

n. Since inf{y„ — u+zn} =0, we have that o-lim xn = u.

It is easily seen that xw^xy„ = x'!+l+xz„^x'i+l + (lH-|8). z„+i

= yn+i+f5zn+x for all n. Thus, xu^u. From this it follows that xnu^u

for all n. Hence it follows that u2^ynu=xnu+znu^u+ua"u for all n.

Hence u2^u.

Now let us assume that multiplication is continuous. Since

0±=xyn — XM=x(y„ — u) and since inf {x(yn — u)} =0, we see that

inf{xy„} =xu. It is clear that xyn^xn+1, which means that xyn+z„

=£yn+i=Sw for all n. Since inf {xyn+z„} =xu, we see that xu^u. We

have already shown that xu^u. Hence, xu = u. Similarly, we can

show that ux — u.

Now 0^uyn — u2 — u(yn — u). Since ini{u(yn — u)} =0, we see that

inf {uyn} =u2. From what was just proved above we see that uy„

= u+uanu for all n. Hence, u2 = ini{uyn} =u.
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