ON THE VANISHING OF $H^n(X, \mathfrak{F})$ FOR AN n-DIMENSIONAL VARIETY

STEVEN L. KLEIMAN¹

Let X be an irreducible algebraic variety of dimension n. Then the cohomology group $H^n(X,\mathfrak{F})=0$ for all coherent sheaves F if and only if X is nonproper [=not complete]. This fact was conjectured by S. Lichtenbaum and proved by A. Grothendieck, in the more general form of the theorem stated below, by means of a delicate argument, which requires an examination both of the residue map and of the relation between local and global duality, [1]. This note gives a more elementary proof of this theorem.

To prove the sufficiency, we reduce to the case X is normal. Here we construct an open affine subset U of X whose complement Y is again irreducible and nonproper, and we consider the canonical exact sequence

$$0 \to \mathfrak{F} \xrightarrow{v} i_* i^* \mathfrak{F} \to \operatorname{Coker} v \to 0$$

where $i: U \rightarrow X$ is the inclusion map. As $H^q(X, i_*i^*\mathfrak{F}) = 0$ for q > 0, to be able to finish by induction on $n = \dim X$, in Remark 1 we strengthen the theorem to the form in which X is a closed subprescheme of Z and F is a quasi-coherent \mathfrak{O}_Z -module. We start the induction with n = 1, here X is an affine curve. However if we start the induction with n = 0, the proof yields $H^q(X, \mathfrak{F}) = 0$ for q > n, X proper or not.

To prove the necessity, we first reduce to the case X is projective by taking a Chow cover of X and applying the Leray spectral sequence. Then we prove $H^n(X, \mathfrak{O}_X(-m)) \neq 0$ for all $m \gg 0$ by induction on n.

THEOREM. Let X be an n-dimensional algebraic scheme over the field k. Then for any coherent O_X -module \mathfrak{F} , $H^n(X, \mathfrak{F})$ is a finite dimensional vector space over k. Furthermore, the following conditions are equivalent;

- (i) All irreducible components of X of dimension n are nonproper.
- (ii) $H^n(X, \mathfrak{F}) = 0$ for all coherent \mathfrak{O}_X -modules \mathfrak{F} . Moreover, if X is quasi-projective and $\mathfrak{O}_X(1)$ is a very ample \mathfrak{O}_X -module, then (i) and (ii) are also equivalent to
 - (iii) $H^n(X, \mathfrak{O}_X(-m)) = 0$ for all $m \gg 0$.

Received by the editors August 14, 1966.

¹ This research was in part supported by the National Science Foundation under Grant NSF GP-5177.

REMARK 1. Suppose X is a closed subprescheme of a noetherian prescheme Z. Then for any integer n, the following conditions are equivalent:

- (a) $H^n(X, \mathfrak{F}) = 0$ for all coherent \mathfrak{O}_X -modules \mathfrak{F} .
- (b) $H^n(Z, \mathfrak{F}) = 0$ for all quasi-coherent \mathfrak{O}_Z -modules \mathfrak{F} with support in X.

Indeed the implication (b) \Rightarrow (a) is clear. Conversely let \mathfrak{F} be a quasi-coherent \mathfrak{O}_Z -module with support in X. \mathfrak{F} is the direct limit of its coherent submodules \mathfrak{F} (cf. [2(a)], and $H^n(Z, \mathfrak{F})$ is the direct limit of the $H^n(Z, \mathfrak{F})$, by [3]; hence, we may assume \mathfrak{F} is coherent.

Let X' be the subprescheme of Z defined by the annihilator of \mathfrak{F} . Then \mathfrak{F} is a coherent \mathfrak{O}_X -module. Further the reduction X'' of X' is a subprescheme of X because its underlying space, which is the support of \mathfrak{F} , is contained in X. Therefore (a) implies that the set K' of coherent $\mathfrak{O}_{X'}$ -modules \mathfrak{F} such that $H^n(X',\mathfrak{F})=0$ contains every coherent $\mathfrak{O}_{X'}$ -module; hence, it contains every coherent $\mathfrak{O}_{X'}$ -module by the following lemma.

LEMMA 1. Let X be a noetherian prescheme, and let K' be a set of coherent O_X -modules which satisfies the following two conditions:

- (1) For every exact sequence $0 \rightarrow \mathfrak{F}' \rightarrow \mathfrak{F} \rightarrow \mathfrak{F}'' \rightarrow 0$ of coherent $\mathfrak{O}_{\mathbb{X}}$ -modules such that $\mathfrak{F}', \mathfrak{F}'' \in K'$, also $\mathfrak{F} \in K'$.
- (2) For every irreducible component Y of X given its unique induced reduced structure and for every coherent \mathfrak{O}_Y -module $\mathfrak{F}, \mathfrak{F} \subseteq K'$.

Then K' is the set of "all" coherent O_X -modules.

Indeed let Y_1, \dots, Y_m be the irreducible components of X, and let $\mathfrak{g}_1, \dots, \mathfrak{g}_m$ be their defining sheaves of ideals. Then $(\mathfrak{g}_1 \dots \mathfrak{g}_m)^k$ =0 for some integer k. Now given a coherent \mathfrak{O}_X -module \mathfrak{F} , set $\mathfrak{F}_{ij} = \mathfrak{g}_1^{i+1} \dots \mathfrak{g}_{j-1}^{i+1} \dots \mathfrak{g}_m^i \cdot \mathfrak{F}$ for $i=0, \dots, k$ and $j=1, \dots, m$. The \mathfrak{F}_{ij} ordered lexicographically, filter \mathfrak{F} . Their successive quotients are \mathfrak{O}_{Y_i} -modules for suitable l, and so are in K' by (2). By (1) and by induction $\mathfrak{F} \subset K'$.

REMARK 2. Let Y be a locally noetherian prescheme, $f: X \rightarrow Y$ a separated morphism of finite type, y a point of Y, and n the dimension of $f^{-1}(y)$. Then it is not true in general that

$$(R^q f_* \mathfrak{F})_y = 0$$

for all coherent O_X -modules F and all q > n, so we cannot expect a relative form of the theorem.

For example, let Y be a nonsingular variety of dimension r > 2, y a closed point of Y, $X = Y - \{y\}$, and $f: X \rightarrow Y$ the inclusion. Then via

local cohomology we easily compute that $R^{r-1} f_* \mathfrak{O}_X$ is the injective hull of k(y) supported at y.

On the other hand, (*) does hold if f is proper, [2(b)].

Returning to the theorem, to prove $H^n(X, \mathfrak{F})$ is finite dimensional, we may assume X is reduced and irreducible by Lemma 1. Then if X is proper, $H^n(X, \mathfrak{F})$ is finite dimensional by the finiteness theorem [2(c)]; if X is nonproper, $H^n(X, \mathfrak{F}) = 0$ by the implication (i) \Rightarrow (ii) proved next.

To prove (i) \Rightarrow (ii), again by Lemma 1, we may assume X is reduced and irreducible. We may also assume \mathfrak{F} is torsion free. For let 3 be the torsion submodule of \mathfrak{F} , and set $\mathfrak{G}=\mathfrak{F}/3$. Then \mathfrak{G} is torsion free, and $H^n(X,\mathfrak{F}) \xrightarrow{\sim} H^n(X,\mathfrak{G})$ because $H^n(X,\mathfrak{F}) = 0$. Finally we may assume X is normal by the following beautiful argument due to Grothendieck [2(d)].

Let X' be the normalization of X in its function field, and let $f = (\Psi, \theta) \colon X' \to X$ be the canonical morphism. $\theta \colon \mathfrak{O}_X \to f_* \mathfrak{O}_{X'}$ is an isomorphism on some open set U because f is birational. So θ induces a map

$$v \colon \mathcal{G} = \operatorname{Hom}_{\mathcal{O}_X}(f_*\mathcal{O}_{X'}, \mathfrak{F}) \to \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{O}_X, \mathfrak{F}) = \mathfrak{F},$$

which is also an isomorphism on U. The kernel of v, $\operatorname{Hom}_{\mathfrak{O}_X}(\operatorname{Coker}\theta,\mathfrak{F})$ is zero because \mathfrak{F} is torsion free and because $\operatorname{Coker}\theta$ is torsion, θ being an isomorphism on U. Thus we have the exact sequence

$$0 \to \mathcal{G} \to \mathcal{F} \to \text{Coker } v \to 0$$
,

and it suffices to show $H^n(X, \mathcal{G}) = H^n(X, \text{Coker } v) = 0$.

Coker v is torsion because v is an isomorphism on U; hence $H^n(X, \operatorname{Coker} v) = 0$. On the other hand, g is a coherent $f_*\mathfrak{O}_{X'}$ -module. Since X' is affine over X, $g = f_*g'$ for some coherent $\mathfrak{O}_{X'}$ -module g', and $H^n(X, g) = H^n(X', g')$. But X' is nonproper because X is, and X' is normal.

Lemma 2. Let X be an irreducible normal algebraic scheme of dimension at least 2. Then there exists a closed irreducible subscheme Y of X such that X-Y is affine. Further Y is nonproper if X is.

Indeed let (X', f) be a Chow cover of X: X' is reduced and quasiprojective, $f: X' \to X$ is proper and birational. Let E' be the exceptional locus of f, the closed set of points $x \in X'$ such that $\dim_x f^{-1}f(x)$ ≥ 1 , or such that f is not biregular at x, equivalently X being normal. Let X'' be the closure of X' in some projective space, E'' the closure of E in X'', and set $Z = E'' \cup (X'' - X')$. Blowing up Z, we may assume Z is a Cartier divisor. Let Y'' be an irreducible hypersurface section of X'', and let $Y = f(Y'' \cap X')$. Y is closed irreducible, and X - Y is isomorphic to $X'' - (Z \cup Y'')$ because Y'' meets the fibre $f^{-1}f(x)$ through every $x \in E'$ and because f is an isomorphism off E'. But the Cartier divisor Z + mY'', $m \gg 0$, is very ample; hence, $X'' - (Z \cup Y'')$ is affine.

If X is nonproper, then X' is also nonproper. So X''-X' is nonempty and of pure codimension 1. Hence $Y'' \cap (X''-X')$ is also nonempty. Therefore $Y'' \cap X'$ and $Y = f(Y'' \cap X')$ are nonproper.

To finish proving (i) \Rightarrow (ii), we proceed by induction on n, the dimension of X. $n \neq 0$, for otherwise X would be proper. If n = 1, X is affine; hence certainly $H^n(X, F) = 0$. Assume then $n \geq 2$.

Apply Lemma 2; let U = X - Y and $i: U \rightarrow X$. Consider the canonical map $v: \mathfrak{F} \rightarrow i_*i^*\mathfrak{F}$. v is an isomorphism on U; hence Ker v and Coker v are torsion with support in Y. Because \mathfrak{F} is torsion free, Ker v is zero, and we have the exact sequence

$$0 \to \mathfrak{F} \to i_*i^*\mathfrak{F} \to \operatorname{Coker} v \to 0.$$

But $H^{n-1}(X, \text{Coker } v) = 0$ by induction and by Remark 1, while $H^n(X, i_*i^*\mathfrak{F}) = 0$ by the following lemma.

LEMMA 3. Let X be a scheme, U an affine subscheme, i: $U\rightarrow X$ the inclusion. Then for any quasi-coherent sheaf \mathfrak{F} on U, $H^q(X, i_*\mathfrak{F}) = 0$ for all q > 0.

Indeed since X is separated, i is an affine morphism. Hence $H^q(X, i_*\mathfrak{F}) = 0$ for all q > 0.

The implication (ii) \Rightarrow (iii) of the theorem is trivial. Conversely for all coherent \mathfrak{F} and all $m \gg 0$, there exists a surjection $\mathfrak{O}_X(-m) \rightarrow \mathfrak{F} \rightarrow 0$; hence (iii) \Rightarrow (ii).

To prove (ii) \Rightarrow (i), we assume X is irreducible and proper, and we construct a coherent \mathfrak{O}_X -module \mathfrak{F} such that $H^n(X, \mathfrak{F}) \neq 0$. First we reduce to the case X is quasi-projective by applying the following lemma to a Chow cover (X', f) of X.

LEMMA 4. Let X be a noetherian prescheme of dimension $n, f: X' \to X$ a proper birational map, \mathfrak{F} a coherent $\mathfrak{O}_{X'}$ -module. Then $H^n(X', \mathfrak{F}) \neq 0$ implies $H^n(X, f_*\mathfrak{F}) \neq 0$.

Indeed for $q=0, 1, \dots, n-1$ let Z_q be the closed set of points $x\in X$ such that $\dim f^{-1}(x)\geq n-q$. By Remark 2, $R^{n-q}f_*\mathfrak{F}$ has support in Z_q . But $\dim f^{-1}(Z_q)\leq n-1$ because f is an isomorphism on an open set. Hence $\dim Z_q\leq (n-1)-(n-q)=q-1$. Therefore $H^q(X,R^{n-q}f_*\mathfrak{F})=H^q(Z_q,R^{n-q}f_*\mathfrak{F})=0$, and the Leray spectral sequence yields a surjection

$$H^n(X, f_*\mathfrak{F}) \to H^n(X', \mathfrak{F}) \to 0,$$

completing the proof of the lemma.

Finally, when X is projective, we prove $H^n(X, \mathfrak{O}_X(-m)) \neq 0$ for $m \gg 0$. We simply bound dim $H^q(X, \mathfrak{O}_X(-m))$ by a polynomial $P_X(m)$ of degree $\leq n-1$, for $q \leq n-1$ and $m \geq 0$. For then dim $H^n(X, \mathfrak{O}_X(-m))$ $\geq \chi(\mathfrak{O}_X(m)) - n P_X(m) = (\deg X/n!)m^n + \cdots$. We construct $P_X(m)$ by induction on n. When n = 0, we take P(m) = 0. When n > 0, we find a hyperplane section H of X which avoids Ass X. Then the sequence

$$0 \to \mathfrak{O}_X(-m-1) \to \mathfrak{O}_X(-m) \to \mathfrak{O}_H(-m) \to 0$$

is exact and yields dim $H^q(X, \mathcal{O}_X(-m-1)) - \dim H^q(X, \mathcal{O}_X(-m))$ $\leq \dim H^q(H, \mathcal{O}_H(-m)) \leq P_H(m)$; whence we may construct P_X from P_H and dim $H^q(X, \mathcal{O}_X)$.

REFERENCES

- 1. R. Hartshorne, *Local cohomology*, Lecture notes, Harvard Univ., Cambridge, Mass., 1962, p. 100.
- 2. A. Grothendieck, Éléments de géométrie algébrique, Inst. Hautes Etude Sci., Paris, 1960.
 - (a) (I, 9.4.9, Corollaire).
 - (b) (III, 4.2.2, Corollaire).
 - (c) III, 3.2.3, Corollaire.
 - (d) II, 6.7, Chevalley's theorem.
 - 3. R. Godement, Théorie des faisceaux, Hermann, Paris, 1958; II, 4.12.

COLUMBIA UNIVERSITY