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A bounded linear transformation of an abstract Hilbert space 5C

into itself will be called an operator on 3C. A one-parameter family

P(e) of operators on 3C will be called regular on the interval |e| <p

if it can be expressed as a convergent power series in a real parameter

e: T(e) = T0+eTi-\-e2T2+ • • • , the Tk being operators on 3C. The

weak, strong, and uniform convergence of this series are equivalent

If 5„(e) is the partial sum P0+ePi + ■ ■ ■ +«nPn, e being real,

S*(e) = Po*+eP* + • • ■ +e"P„*. Since a bounded operator has the

same norm as its adjoint, ||P*(e) — 5*(e)|| = ||P(e) — 5„(e)||—>0 as

»—»oo. Therefore

(1) T*(e) - P*+eP* + e2P2+--. .

Thus, if P(e) is regular and self-adjoint, the self-adjointness of the

coefficients Po, Pi, P2, • • • is demonstrated by equating the coeffi-

cients of like powers of e in the series for T(e) and P*(e). It is obvious

that the self-adjointness of the coefficients implies the self-adjoint-

ness of P(e).

These results do not have a direct analogue for a regular normal

operator N(e) =No+eNi-\-e2N2+ ■ • • (an operator N is normal if

NN* = N*N). That is, the normality of the sum does not guarantee

the normality of the coefficients nor does the normality of the coeffi-

cients imply that the sum is normal. Nevertheless, there is one case

—namely when N(z) = Ar0+zAri+z2A72 + • ■ • is normal for all (real

and complex) z in a neighborhood of z = 0—where the power series

sum being normal guarantees the same for the coefficients. This and

more is contained in the corollary to the following theorem.

Theorem 1. Ij A(z)=A0+zAi+z2A2+ ■ ■ ■ and B(z)=B0+zBi

+z2B2+ ■ ■ -converge jor \z\ <p, then A(z)B*(z)=B*(z)A(z) jor

\z\ <pij and only ij AnB* = B*A„ jor every pair ojnon-negative integers

m and n.

Proof. By the same reasoning used to obtain (1), B*(z)=B0*

+zB?+z2B2*+ • • • . It is clear that A(z) will commute with B*(z)

if each coefficient of ^4(z) commutes with every coefficient of B*(z),

Le.i(AnB* = BZAn.
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Suppose now that A{z) commutes with 7?*(z) for \z\ <p and let

z = reH. Then z — re~H. The coefficient of rn+m in A iz)B*iz) is

n+ m

E e^-WAn+n-kBt
fc-0

and in B*(z)Aiz) is

k—0

These coefficients must be equal for all values of 6. Writing this down

as an identity and multiplying both sides by e(m~n)ei, the terms in-

volving AnB* and B^An have coefficient 1 and all other terms have

coefficients of the form e2k6i where ft is a nonzero integer. Thus, on

integrating this identity from 0 = 0 to 6=w, the equation irAnB*

= irB*An arises. So A„B*=BZAn and the theorem is proved.

Corollary. // N(z) =N0+zNi+z2N2+ ■ ■ ■ converges for \z\ <p,

then 7V(z) is normal for \z\ <p if and only if the coefficients N0, Ni,

N2, ■ ■ • form an abelian system of normal operators.

Proof. From the preceding theorem it is seen, on setting Aiz)

= B(z)=Niz), that Niz) is normal for \z\ <p if and only if N„N*

= N*Nn for each pair of non-negative integers m and ra. In particular,

Nn is normal for each ra. Moreover, a theorem of B. Fuglede asserts

that if a bounded operator commutes with a normal operator, then

the adjoint of that bounded operator will also commute with it [l].

(A somewhat simpler proof of this important result has been given

by P. Halmos [2].) Thus NnNm = NmNn. Hence the coefficients com-

mute with each other and with the adjoints of each other. This is

exactly what is meant by an abelian system.

Theorem 2. If Niz)=Na+zNi+z2N2+ ■ ■ -converges and is

normal for \z\ <p, then there is a self-adjoint operator A and a function

F(z, X) such that

(i) F(z, X) is an analytic function of z for each fixed X;

(ii) Fiz, X) is A-integrable with respect to X for each z, \z\ <p; and

(iii) Niz) = Fiz, A).

Proof. By the preceding corollary, the coefficients N0, JVi, N2, • • •

form an abelian system of normal operators. Now to each countable

abelian system {Nk} of normal operators there is a self-adjoint

operator A such that each operator Nk of the system is a function of

A, i.e.
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jk(\)dEx
-00

where jlx\dE\ is the spectral representation of A [4, p. 67]. Take

r<p and choose M so that \\Nk\\^Mr~k. Then ||/*(.4)|| =||^|l
^ Mr~k. Therefore |/*(X) | ^ Mr~k for X in the spectrum of A [5, p.

230]. Since jk(A) is independent of the behavior of jk(X) for X in the

resolvent set of A, it can be assumed that |/*(X) | SMr~k for all real

X. Thus XXo z*/t(X) converges absolutely for |z| <r. Furthermore,

this convergence is uniform with respect to X, and hence termwise

integration is justified:

f    E z*/*(X)^Px =T,zk f mjk(\)dEx = £ zkjk(A)
J —« fc=0 ft—0       J —oo Jfc=0

CO

= £ zW* = iV(z).
t-o

Since r can be taken arbitrarily close to p, it follows on setting F(z, X)

= llt-o z*/t(X) that (i), (ii), and (iii) of the theorem are satisfied.
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