ON ANALYTIC NORMAL OPERATORS
S. L. JAMISON

A bounded linear transformation of an abstract Hilbert space 3¢
into itself will be called an operator on JC. A one-parameter family
T'(e) of operators on 3C will be called regular on the interval lel <p
if it can be expressed as a convergent power series in a real parameter
€: T(e)=To+eT1+€2T>+ - - -, the T being operators on 3. The
v[veak, strong, and uniform convergence of this series are equivalent

3]t

If S.(e) is the partial sum To+eT 1+ - - - +€*T,, € being real,
SXe)=T¢+el*+ - - - +eT,F Since a bounded operator has the
same norm as its adjoint, ||T*(e)—Sk(e)||=]/T(e) —Sa(e)[|—0 as
n— . Therefore

(1) T = To+ eTs + eT5 + - - - .
Thus, if T(e) is regular and self-adjoint, the self-adjointness of the
coefficients Ty, T, T4, - - - is demonstrated by equating the coeffi-

cients of like powers of ¢ in the series for T'(e) and T*(e). It is obvious
that the self-adjointness of the coefficients implies the self-adjoint-
ness of T'(e).

These results do not have a direct analogue for a regular normal
operator N(e) = No+eN,+€e*N,+ - - - (an operator N is normal if
NN*=N*N). That is, the normality of the sum does not guarantee
the normality of the coefficients nor does the normality of the coeffi-
cients imply that the sum is normal. Nevertheless, there is one case
—namely when N(z)=No+2N1+22N,+ - - - is normal for all (real
and complex) z in a neighborhood of z=0—where the power series
sum being normal guarantees the same for the coefficients. This and
more is contained in the corollary to the following theorem.

TueOREM 1. If A(z)=A+24:1+224As+ - - - and B(z) =B,+:2B,
+22By+ - - - converge for Izl <p, then A(2)B*(z)=B*(z)A(z) for
| zl <p if and only if A.B}=ByrA ., for every pair of non-negative integers
m and n.

Proor. By the same reasoning used to obtain (1), B*(2) =B¢*
+zB*+422B&+ - - - . It is clear that A(2) will commute with B*(2)
if each coefficient of 4 (z) commutes with every coefficient of B*(z),
i.e. if A,B=BjA..
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Suppose now that A(z) commutes with B*(z) for Izl <p and let
z=re%. Then z=re?%. The coefficient of r*+™ in 4 (3) B*(3) is

n+m

. %
Z entm2koig B
k=0

and in B*(2)A4(2) is

n+m

> e(tm—2R)0iBY

k=0

These coefficients must be equal for all values of §. Writing this down
as an identity and multiplying both sides by e™—"% the terms in-
volving A,B and B}A, have coefficient 1 and all other terms have
coefficients of the form e where %k is a nonzero integer. Thus, on
integrating this identity from #=0 to §=m, the equation 74,B}
=wB}A, arises. So 4,B=B}A, and the theorem is proved.

CoOROLLARY. If N(z)=No+2zN1+22No+ - - - converges for Izl <p,
then N(2) is normal for ]zl <p if and only if the coefficients Ny, Ni,
N,, - - - form an abelian system of normal operators.

Proor. From the preceding theorem it is seen, on setting 4 (2)
=B(z) = N(z), that N(z) is normal for || <p if and only if NN}
= NN, for each pair of non-negative integers 7 and #. In particular,
N, is normal for each #». Moreover, a theorem of B. Fuglede asserts
that if a bounded operator commutes with a normal operator, then
the adjoint of that bounded operator will also commute with it [1].
(A somewhat simpler proof of this important result has been given
by P. Halmos [2].) Thus N,N,,=N,N,. Hence the coefficients com-
mute with each other and with the adjoints of each other. This is
exactly what is meant by an abelian system.

THEOREM 2. If N(2)=DNo+2zN1+2:N.+ - - - converges and is
normal for ]zl <p, then there is a self-adjoint operator A and a function
F(z, \) such that

(1) F(z, N) is an analytic function of z for each fixed \;

(ii) F(z, N) is A-integrable with respect to \ for each z, Izl <p; and

(iii) N(z)=F(z 4).

Proor. By the preceding corollary, the coefficients Ny, Ny, N3, - -
form an abelian system of normal operators. Now to each countable
abelian system {N.} of normal operators there is a self-adjoint
operator 4 such that each operator N} of the system is a function of
4, i.e.
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Ni = fud) = f FN B

where [Z.N\dE, is the spectral representation of 4 [4, p. 67]. Take
r<p and choose M so that ||Ni||<Mr=* Then [fi(4)] =] N
< Mr—*. Therefore |fi(\)| < Mr—* for \ in the spectrum of 4 [5, p.
230]. Since fi(4) is independent of the behavior of fy(\) for A in the
resolvent set of 4, it can be assumed that | fk()\)l < Mr~* for all real
\. Thus X 5o 24x(\) converges absolutely for |zl <r. Furthermore,
this convergence is uniform with respect to A\, and hence termwise
integration is justified:

L

"3 adn = 3ot [ a0im = 3 )

—o0 k=0 k=0 k=0

= iz”Nk = N(2).

k=0

Since 7 can be taken arbitrarily close to p, it follows on setting F(z, \)
= > o 2i(\) that (i), (ii), and (iii) of the theorem are satisfied.
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