
TWO-ENDED TOPOLOGICAL GROUPS

leo zippin

Introduction. Let G be a locally compact, connected topological

group (satisfying the second countability axiom). Let G* be a com-

pact space which contains a dense subset G' homeomorphic to the

space G and is such that G* — G' is totally disconnected. Then,

Freudenthal has proved [l, Satz IX, p. 277]1 that the set G*-G'

consists of at most two distinct points. Actually, Freudenthal's

theorem even for topological groups is more general than here stated,

and this theorem is an application to group spaces of a wider theory of

"ends" of topological spaces. However, we shall quote only so much of

Freudenthal's results as are necessary to this paper.

It will be convenient to regard G' as identical with G so that G is

topologically imbedded in G*. We shall call a locally compact, con-

nected group G two-ended if a G* exists such that G* — G consists of

two distinct points. The simplest example of such a group is the addi-

tive group of reals. Other examples are afforded by the direct product

of this group and any compact connected topological group; it is

likely that these are the only examples.

The principal objective of this note is the following theorem.

Theorem A. If a locally compact, connected topological group G is

two-ended, then G contains a closed subgroup T isomorphic to the group

of reals such that the coset-spaceG/T is compact; moreover, the space G

is the topological product of the axis of reals by a compact connected set

homeomorphic to the space G/T.

1. Definitions. Now let G be two-ended and G* compact, and

necessarily connected, such that G* — G consists of a pair of points.

We shall denote one of these by eL and the other by eR. The space

G* is not a group, but we may continue to speak of the group prod-

uct fg when/, gGGCG*. Moreover [l] each /£G may be regarded

as a homeomorphism f(G*)=G* by the definitions: f(e£)=et,

f{eR)=eR,f{g) =fgE.G when g£G. To the product of homeomorphisms

/and g there corresponds the homeomorphism associated with/g£G.

We shall denote by gK (resp. Kg), gEG, KQG, the set of points gk

(resp. kg), where k£K.

The two following properties [l ] of G* are of great importance in

this work.
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(1.1) If g„£G, n=l, 2, ■ ■ ■ , and g„—>eR, then g^1—and if

gB—>cl then gä1—*eR.

(1.2) If AT is a compact subset of G and gn-^eR (resp. er,), then

gnK->eR (resp. er,).

In virtue of the known structure of locally compact abelian groups

we may, in any locally compact group, distinguish between two

classes of elements [2, Lemma 2, p. 96]. One of these is:

(1.3) The class which we shall denote by C consisting of those

element of G which are contained in compact subgroups of G. For any

elements c£C, and any neighborhood V of the identity of G, there

exists an integer n such that cn£ F.

Each element of G not in C generates a subgroup of G isomorphic

to the group of integers. For such elements no sequence of distinct

powers has any limit in G. Now in a two-ended G we may distinguish

further:

(1.4) The class R of elements of G such that if r£2? then rn—*eR

(in G*), and

(1.5) The class L such that IGL if l"EeL (inG*).

It is clear from (1.1) that R and L are each the set of inverses (in

G) of the other, are mutually exclusive, and are homeomorphic.

It is another matter, of course, to assert that none of these classes

L, C, and R is empty, or that they comprise all elements of G. This

will be shown in the succeeding paragraphs. The assumption that G

is two-ended is to be understood throughout; many of the lemmas

are not valid in the more general case.

2. The key lemma.

Principal Lemma. If gn-^eR, g„£G, then for all but a finite number,

gn<ER.

Proof. From the definition of ends [l ] it follows at once that there

exists a closed compact set KC.G, and open sets A and B of G*

such that

(2.1) G* = A\J K\J B,

eL G A, eR G B, A r\ K = K Pi B = B Hi = A (~\B = 0.

By (1.1) for almost all n, gnKCZB. Let g denote any g„ for which

gKQB. Then ~ÄT\gK = 0.
Now let At, denote the component of G* — K which contains ez,.

Then Ao is a maximally connected subset of A, A a is closed in A,

and Aür\K is not empty since G* is connected [3, p. 16]. Let k denote

some element of the set Aa(~\K.
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(2.2) G* = g(G*) = gAVJgKKJ gB,

and it is easily seen that gAo is the component of G* — gK which

contains ei, = g(er,). Then, since gKQB, A0C\gK = 0 and AoCgAt,.

Moreover, since gk(E.B, gk(£A<> and there is some neighborhood V of

k such that gVr\A0 = 0. Since &G-4o, VC\An is not empty. Choose

some adVT^Ao. There is a neighborhood W of the identity such

that WaCV. Then gWaCgV, and {gWa)C\Äa = 0. Thus we have

shown that

(2.3) loC^.-^nlo),

and if we denote g-1 by/, we may write this as

(2.4) JAoCA-WarMo.

Now, for every integer n,

(2.5) /-Jo = /""'/Jo C /-'lo C • ■ • C/Jo C A - Wa C\ J0.

In consequence of this, for every n, fna(£Wa, and therefore /"(£W.

But now it follows from (1.3) that no sequence of powers of / can

converge to any element of G. On the other hand, since/"aC-4, no

subsequence of the points fna, n=\, 2, • • • , can converge to cbG-B-

Because of (1.2), no subsequence of the set /", w=l, 2, • • • , can

converge to eR. Finally, then, /"—>EL, and in consequence of this

gn—>eR, since g=/-1. This proves the lemma.

Corollary. There exists an open set 0*C.G*, c^GO*, such that if

gGO*r\G, then gGR.

This follows from the lemma by the observation that if no such 0*

existed one could construct a sequence gn-^eR such that gn(£R, and

this would contradict the lemma.

Lemma. If gGG and for some positive integer k, gkCR, then gGF

Let Q denote an arbitrary open subset of G* containing c«.

Since gk(E.R, the sequence gn*—»e«, k fixed. Therefore for each

m=0, i, 1, • • • , k — 1, the sequences gnkgm = gnk~m-^eR (k and m fixed)

and there exists an integer N such that for all n^N and all

m = 0, 1, • • • , k — 1, gnt+mGC2- This means, of course, that in the se-

quence g, g2, g3, • • • , all but a finite number belong to Q. Since Q is

an arbitrary neighborhood of eR, this implies that gn—>e« and, conse-

quently, gG-R.

Corollary. R is open, and R^JeR is open.

Let gERCG. Then for some integer k, g*GO*HG, for the 0* of the
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preceding corollary. The set 0*C\G is open and contained in R.

Then there is a neighborhood V of g such that VkC_0*(~\G. Now for

any fCV,fkEO*r\G(ZR and consequently f(E.R. This establishes
that R is open and, since 0*C.R^JeR, it is clear that RSJeR is open.

3. Another lemma. We have proved now that R is open and not

empty. By symmetrical arguments, or by an application of (1.1), the

set L is not empty and open. Moreover, in view of the preceding

corollary, e^LKJRKJeR is an open set whose complement clearly

is a closed and compact subset of G. Further, if c is an element of

this complement, then c"^L^JR for every integer n, by a preceding

corollary. Then cGCas denned in (1.3). Since i?ni = 0, and since G

is connected, it follows that

(3.1) G = L\JC\JR,

where C is closed, compact, not empty. We observe, from the form of

(3.1), that C separates G* between et and e^; that is, there is no

connected subset of G* — C which contains both et and eR.

Lemma. The identity e of G is a limit of element of R.

We know that Cf\R is not empty, since G is connected. Let cEC

C\R, and let F be an arbitrary neighborhood of the identity. There

exists an integer n such that c"G F, by (1.3), and there must exist a

neighborhood W of c such that fFnC F. This implies that there are in

V elements of the form rn, rEWP\R. For such r, rn(E.R- Therefore

RC\ V is not empty, and since F is an arbitrary neighborhood of the

identity we have established the lemma.

4. One-parameter subgroups. It is our next task to construct in G

a one-parameter group T which is closed in G. Now if T denotes any

one-parameter subgroup of any locally compact group G, then by a

result of which we have already taken partial advantage [2, p. 96]

either T belongs to some compact subgroup of G, and in that case

FCC, or T is a closed subgroup of G. Therefore, to construct in G a

subgroup isomorphic to the additive group of reals it suffices to con-

struct a one-parameter group which contains an element not in C.

Lemma. G contains a connected abelian group A which contains an

element of R.

The group A will be constructed with the aid of the preceding

lemma. Let rn—>e, rnER. Denote by 0 an open compact subset of G

such that CCO, and denote by An the group generated by rn. This
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group is isomorphic to the additive group of integers. Then An will

have elements in Q and also in the complement of Q, and it is easy

to see that there is a subsequence Ani of the sequence An such that

some point of Q — Q is in the sequential limit set of the sequence of

sets Ani. This sequential limit set is the desired group A. We have

merely sketched the argument because it occurs in substantially the

form needed here in [4, Lemma 5, p. 112].

Corollary. G contains a subgroup T isomorphic to the additive

group of reals.

The closure of the group A of the preceding lemma is a locally com-

pact connected abelian group and is therefore the direct product of

a compact subgroup by an w-dimensional vector group [S]. Since A

cannot be compact, containing an element of R, it follows that the

vector group is not the identity and must contain a subgroup Tof

the desired property. This is a closed subgroup of G, as well as of A.

5. Conclusion of the proof of Theorem A. We are nearing the end

of our task. We know that G contains at least one subgroup iso-

morphic to the reals. Suppose that T is any such closed one-param-

eter subgroup. Then the set ei\JT\Jen is a closed subset of G*

homeomorphic to a simple arc with end points eR and ex,. Moreover,

this is also true of the set ei\JgTVJeR for every g(EC Then it follows

from the remark following (3.1) that every coset gT contains at least

one point of C. Let us now consider the coset-space, for definiteness

the right coset space G/T. Since T is closed in G, G/T may be topolo-

gized and is a locally compact topological space [5]. It may assist

the reader to remark that an essential feature of this topology is the

fact that if gn—>g, where g, gnEG, and if the sequence gjn, /„£-F, has

any limit point in G then this limit point is of the form gl for some

/GT.

Lemma. The coset-space G/T is compact and homeomorphic to a space

C* which is a continuous image of C.

Let us denote by C„ the set CC\gT, for gGC This is a closed set.

Suppose now that gn—*g, gB£C, and consider the associated sets

Cn = CC\gnT. Let knGC„. Then kn = gntn, tn£-T, gnGC. Since C is

compact, and knCC, it is an easy consequence that the set of tn,

« = 1, 2, • • • , is compact. From this it is clear that any limit point

of the set kn, n — i, 2, • • • , is of the form g<GC„, for some t(E.T.

Consequently the sets C„, g£C, give rise to an upper semi-continu-

ous decomposition [3 ] of C, and there is a compact space C* which is
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a continuous image of C, <f>(C) = C*. For each c*£C*, the set <£-1(c*)

is some decomposition set Cg=Cr\gT.

Now it is clear that each point of C* is associated uniquely with a

coset gT and therefore with a point of the coset-space G/T. Since

each coset intersects C, this correspondence extends over all of G/T

and all of C*. From the definition, above, of C* and the topology of

G/T it follows easily that this correspondence is a homeomorphism.

This establishes the major part of Theorem A.

The fact that the coset-space G/T is homeomorphic to a compact

set C* is not alone sufficient to insure that G may be expressed as

the topological product of C* and T. This would imply, and is im-

plied by, the existence in G of a closed set C meeting each coset gT

in one and only one point. But the fact that T is a closed one-

parameter group is enough to insure the existence of such a "cross-

section." This was proved by Montgomery and the author [6] in a

somewhat more general context, and depends on certain local "sec-

tions" of regular families of curves constructed by Whitney. We may

conclude, then, that G is representable as the direct product of two

closed subsets, the set T and a cross-sectioning set C which is of

necessity homeomorphic to C*. Since G is connected, it is clear that

C and C* are connected as well as compact. This concludes the proof

of Theorem A.

6. An application. As an application of Theorem A, let us suppose

that a two-ended group G possesses a connected subgroup H which

is not compact. Then H is locally compact and connected and also

two-ended. Therefore, H contains a subgroup T isomorphic to the

group of reals. Since T is in G, it is evident from the preceding section

that G/T is compact. All the more, then, G/H is compact.

It is an immediate consequence of this remark that if a locally

compact connected group G contains a non-compact connected sub-

group H such that the coset space G/H is not compact, then G can-

not be a two-ended group. Therefore, by Freudenthal's theorem

which forms the point of departure for this note, G can have only a

single "end." This sufficient condition for "one-endedness" generalizes

a result due to Freudenthal, appearing in an appendix to his work [7]

on the "ends" of discrete-spaces.
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