
ON EUCLIDEAN LOCAL GROUPS SATISFYING
CERTAIN CONDITIONS

masatake kuranishi

Let G be a euclidean local group, that is, a topological local group

the space of which is homeomorphic to a euclidean space. The pur-

pose of this note is to prove the following theorem:

Theorem. Let G have a neighborhood U of identity e, in which a

metric p(x, y) can be introduced satisfying the following conditions:

(A) If x, y, xyE.il,1 then Kip(y, e)^p(xy, x)^Kip(y, e).

(B) If x, x\ ■ x*"EU, y, y\ ■ ■ ■ , y***, y^EU, then
KJLnp{x, y) ^p(x2", y2") gK32np(x, y), with positive constants K(, i=l,

2, 3, 4.
Then G is a local Lie group, and vice versa.

P. A. Smith [2]2 has obtained a necessary and sufficient condition

for G to be a local Lie group. He says that if we can introduce into a

neighborhood of e a coordinate system a1, • ■ • , cr, with respect to

which the product function ab is expressible in the form, written

vectorially,

ab = a + b + | a \F(a, b)

where | a\ = (Z(a<)2)1/2 and where F satisfies the sole condition that

F—>0 as a—>e, b—>e, then G is a local Lie group and vice versa. A

coordinate system satisfying this condition is called by him (right)

regular. It is shown [l; 2] that a coordinate system in which the prod-

uct function ab is of class C1 with respect to b fixing a is regular

and that the euclidean metric of a regular coordinate system satisfies

our conditions (A) and (B).

Our assumptions (A) and (B) are mainly used to select a uni-

formly convergent subsequence from the function family Pn{x, y)

= (xl/2" y1/s")2", n = l, 2, • • • , which, in some sense, corresponds to

differentiating the product function at the identity e.

The author is indebted to Prof. T. Nakayama for his kind en-

couragement and advice.

Lemma 1. Let U be a neighborhood of e in G which contains no sub-

Received by the editors March 4, 1949.

1 In details, we must write—instead of xyE U—xy exists and is contained in U.

But we shall often omit "exists" in such a case in the following for simplicity.

2 Numbers in brackets refer to the references cited at the end of the paper.
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group in the large except {e}. Then there exists a neighborhood V of e

such that x, y, i'=y£7implies x = y.

Proof.' We can assume without loss of generality that U is com-

pact and for any arbitrary three elements x, y, z of U the products

(xy)z and x{yz) exist. Take W such that CO W*. W= W~l. As U is

compact, there exists a neighborhood V of e such that for any gE Z7,

we have g~lVgCW. Now if x, y, x2 = y2EV, put x~1y = a. Then

axa = x, aEV2CWCU, and it follows that if a, a2, • • • , amEU,
then aim=x-1a-mxamEx-1WCW2CU, a2m+1 = alm-aEW2W2CU.

This means that for any integer n, anEU; consequently from the

assumption a = e, x = y.

Remark. In Lemma 1 the assumption that G is euclidean is not

necessary. Let a be a mapping y—>ys. If G is euclidean and if U is

sufficiently small, then a(U) is an open subset of G and a is a homeo-

morphism between U and tj( U). The proof is clear from the Brouwer's

theorem on the invariance of domain and from the fact that V is

compact and that a is one-to-one.

Lemma 2. Let G have a neighborhood U of e such that for any element

y of U— {e} there exists an integer n satisfying y2"$ U. Then, if V is a

sufficiently small neighborhood of e, we can construct a real-valued con-

tinuous function /(y) defined on V satisfying the following conditions:

(i) ify.y'ev.ihenfW^ffy).
(ü) f(y) =0if and only if y = e provided y £ V.

Proof. If y, y2, y*\ • • • , y-^EV, y2"+1EV, we put « = 6>(y).
Take an element p of V, we note that if k£dv(p), then p9*p^.

Consequently if we take a sufficiently small neighborhood W of e,

then for any i<j^6r(p), we have o-^Wp)r\ff'(Wp) = &,cr,r^+1(Wp)

rs7 = ©, where o°(y) =y, <r2(y) =y2, (r<+1(y) =<r1(<r*'(y)).

Construct a continuous function /J?(y) defined on V such that

0 g /°(y) i£ 1; if y £ TT#, then/°(y) = 0; and/,'(#) = L

For any integer fego>(p) put

if y £ <r\wp),     fl(y) = 0,

if y £ <r (IF*),      fP(y) = /„(y    ),   where   (y    )   = y.

If F is sufficiently small, by the remark to Lemma 1, /J(y) is a con-

tinuous function defined on F. Put

* This simple proof was suggested to the author by T. Hayashida. The author's

original proof is more complicated.
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«F(J>> k

My) = Z My).
k-0

It is easy to see that/p(y) is a continuous function denned on V and

0$/&)Sl, MP) = 1, My2)^My)- As U,6_7W V,= V- {e}, where
Fj> = {y; fp(y)>0}, we can select a countable set {pn\ such that

n."-i VPn=V-{e). Put

/(y) = Z
n=l ^

It is clear that/(y) satisfies our conditions (i) and (ii).

Lemma 3. Under the same assumption as in Lemma 2, there exists a

neighborhood W of e such that for an arbitrary element x of W, W con-

tains a unique element x1/2 satisfying (xll2)2 = x.

Proof. Take a sufficiently small neighborhood V of e, where we

can construct the function /(y) as stated in Lemma 2. Put Vt

= {y;f(y) <e}. If V is sufficiently small, by the Remark to Lemma 1,

a(V) is an open set. From the condition (ii) which/(y) satisfies, there

exists e>0, VtCZo-(V)C\V. This means that for any element y of V,

there exists y1/2GF such that (y1/2)2 = y. But since /(yl/2) 2=/(y) <e,

y1/2G V,. The uniqueness of y1/2 has already been proved in Lemma 1.

By Lemma 3, there exists x1/2" such that (x1/2")2" = x and x1I2"ElW

for any element x of IF. We can assume without loss of generality

WQ U, where U is a neighborhood of e satisfying the assumption of

our theorem. We shall write \x\ instead of p(x, e). Then by (B),

|xi/2"| ^ (l/ü"4)(l/2B)Ix\. We can prove, by induction, the existence

of (x1/2")m and

.     K\ m .
(*) (*«*") - hs-xI I - Ki 2„ I I

for any arbitrary integer m^2n. Assume, in fact, | (x1/2")m|

g,(Ki/K4)(m/2n)\x\ for some m<2", then

| (3.1/2») m+l|   _ I ^l/S»)«^»«!   g  Xl| J.1/2-] + I (xl/2»)m|

#i   1 Ä"! m.
=-• * 4-*

Ki 2"'   1      7^4 2"'

Zi >» 4- 1 i

as we can see easily from (A) that



1950] euclidean local groups 375

(C) I xy I £ Kt I y \ +1 *|:

By using the uniqueness of x1/2, it is easy to see that m/2n = m'/2n'

implies (x1/2")m= (x1'2"')"*'. Now we put f(m/2n) = (x1'2")™; then

f(m/2n)f(m'/2n')=f(m/2n+m'/2n'), and from these and from the

inequality (*) follow the uniform continuity of the function / on the

set {m/2n; m^2"}, which is everywhere dense in the interval [0, l].

Therefore / can be extended to a continuous function / denned on

[0, I]. If we put xx=/(X), x-x=(x~1)x, for any O^X^l, then |xx|

^ (Ki/Kt) I x I and xx ■■x" = xx+" if both sides have meaning. This

proves the following lemma.

Lemma 4. Under the same assumption as in the theorem, there exist

neighborhoods Wi and Wz of e such that for any element x of W\, there

exists a unique one-parameter subgroup xx contained in W2.

From (A),

7£i
(D')    p{ax, ay) g K~iP{(ay)-1 ■ ax, e) = A^pCy"1-*, e) g —- p(x, y).

Aj

Take a sufficiently small neighborhood F of e, and put

2 = {x; x £ F, X2 £ V\, C= min |*|,

Ü = {w; w = ar^xa, x £2, a G F},   D = max | x |.

Then2:£e, 00, D>0, and

(**) I arlxa \ ^ — | x | for x G 2, a G F.

Take yG F, then for some integer ra, y2"G2 and for every integer

O^m^n, y2nGF. From (B) and (**)

■     11.       , .      1    1 D.
a_1-ya  ^ —•-        a_1-y2 a   <-y2   ^- y ,

'     ' 1 - 2» AV ~ 2» #4 C '     ' KtC

(D")   p(xa, ya) g XipC«-^-1*«, e) ^ ——r pCy"1*, e)
A4C

s-p(», y),
A-ÄC '

if x, y, a is sufficiently near to e.

From (D') and (D") we can see that for a sufficiently small neigh-
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borhood V of e, there exists A > 0 such that

(D)<   if x, y, x', y' e V, p(xy, x'y') < A {p(x, x') + p(y, y')}.

If we take a sufficiently small neighborhood Vof e, from (C), (B), and

(D) we can easily prove the existence of Pn(x, y) = (x1/2"y1/2")2* and

(E) I PB(x, y) I - I (y/2V/2")2" I :S (1*1+1,1),

(F) p(P„(x, y), Pn(*', y')) ^ —— {P(x, x') + p(y, y')}

for arbitrary x, y, x', y'£ FC U.

Therefore Pn(x, y), » = 0, 1, 2, • • ■ , is an equi-continuous and uni-

formly bounded family of functions denned on FX F, and conse-

quently a uniformly convergent subsequence {Pn> (x, y)) can be se-

lected from {Pn(x, y)}. Put P(x, y) =limn^00 Pn>(x, y).

Now we shall prove that if we define the product x o y = P(x, y), V

becomes an abelian local Lie group. We denote this local group by H.

(1) Commutativity is clear from (xUfyU?)? = xmn(ymnxii-t)-?

fx1'2")-1.

(2) Associative law: Put P(x, y)=en>P„>(x, y), then lim„'.«, e„» = e.

Using (D), (E), and (F),

KsA*
p(P„<(P(x, y), w), PAP Ax, y), w)) ^ —— p(*v, e),

from the definition P„'(PB<(x, y), iv)=Pn-(x, P„'(y, w)). From these

we can see (x o y) o w = x o (y o w).

(3) xx o x" = xx+", which shows the existence of the inverse, and

that every one-parameter subgroup of G is also that of H.

(4) As H is abelian, we can find easily x\, xt, • ■ • , xr of H (where r

is the dimension of G) such that W= [y; y = x*1 o x^* o • • • o x)r,

|X,| ^1, 2, • • • , r] is a neighborhood of e and mapping

(Xi, Xs, • • • , Xr)—»xXl o x^* o • • • o xx' is topological. Moreover

. Xj Xr\     /  Xl Xl\        / M+Xj xr+x^
(Xi o • • • o Xr ) o (Xi o • • • o Xr ) = (Xi       o • • • o X, ).

Thus we can see that H is a Lie group.

Lemma S. Under the same assumptions as in the theorem the local

group consisting of inner automorphisms of G is a linear group.

Proof. From the uniqueness of x1'2, it is easy to see pxinp~l

4 The proof of this inequality is essentially due to P. A. Smith [2].
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= (pxp~1)112, for arbitrary x, y, p(EV. From this and from the suffi-

cient smallness of | Pn(x, y) |, we can deduce immediately that for

arbitrary p, x, y£ V, P„(#_1x#, p~*yp) = p~1Pn(x, y)p, which implies

(,p~lxp) o (,p~lyp)=p~l(x o y)p. Thus x-^p^xp is an automorphism

of the abelian Lie group H, which proves the lemma.

Lemma 6.s Let N be a closed local normal subgroup of G, satisfying

the following conditions:

(1) TV is an abelian local Lie group,

(2) G/N is a local Lie group,

(3) there exists a set M such that for any a sufficiently near to e, Na

contains one and only one element a' of M depending continuously on

G/N.
If G contains N satisfying the above conditions, G is a local Lie group.

Proof. As TV is an abelian Lie group, we can introduce a co-

ordinate  system  «(£*, ••',$;*)   in  TV  satisfying  «(4;1, •••,£")

••«(£M, • • • , t'n)=u(t1+Z'1, • • • , £"+£'")-The transformation by an

element a of G induces an automorphism in TV, given by

au (<?, • • • , = «(?», • • • , £'"),

<r*; • • •. *,B) = cp. • • •. tn)Aa,

where (A**) is a real matrix of degree ». As G = NM, we can put for

arbitrary elements p, qEM sufficiently near to e,

pq = ¥(#, q)(poq),

HP, q) = <*X(P, ff),"". *"(#, ?)) G A7, poqC-M,

where, by (3), both £ o g and ^(#, q) are continuous functions on

MX M. Then by the product p o q, M is a local Lie group isomorphic

with G/iV, and M3p—->AV is a representation of the local Lie group

M. Consequently, introducing the canonical coordinate »(n1, • • • ,vm)

in M, Aviv1, • • • , rjm)J are analytic functions of (n1, • • • , rjm).

From the associative law of the product of G, if p, q, r are suffi-

ciently near to e, we can see easily that

(1) 9) + *\p oq,r) = ~EAPi*\q, r) +        30 r), i = 1, • • •,».
j'-i

Let $(#) be an arbitrary continuous function defined on M and

* In the proof of this lemma, the fact that the space of G is euclidean is not used.

To prove our theorem we need only the case when N is the center of G. But we state

the lemma in this general form, because this lemma is applicable to some theorem

on locally compact groups (cf. [3]).
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taking values in N. Mt— {p$; p4, = <b(p)p, pEM} also satisfies the

condition (3), if M is replaced by M$. We can put

p*-qt = ^tip, q)(p*oqt),

?) G N,      p+oq+E M*.

As p* o q<j,= (p o q)t=<f>(p o q)(p o q), the relation between SF* and

^ is given by

n       . .

(2) ¥*,(#, j) = **(#) + + **(>.?) ~ <b\poq),i= 1,2, - .
>'=i

Take two sufficiently small numbers a and j3 such that U

= {v(v\ • • • > Vm); h'|<«} and V={v(r)\ ■ ■ ■ ,Vm); {v'l <ß\
satisfy UDVo V o V and such that if p, q, rEU, equalities (1)

and (2) have meanings. Take a real function c(p) defined on U such

that c(y{yl, • • • , nm)) is of class C3 with respect to n1, • • • , nm and

which satisfies the following conditions:

If pEV, then c(p)=0,

f ■ • • . TT))*?1 • • • AT = I c(v(v))dv = I c(v(v))dv = 1.
t/ V J V J u

Put

■*o(P) = - f **(>. »W)fWl))^ " ~ f »(»»«(»Ol))*»

and <po(P)=«(<Po(P), ■ ■ ■ , 4>l(P))EN. Then from (1) and (2), if

P,qEV

„s  *♦.(*.«)= ?0»(i»))c(»(t;))dij - I »(7j))c(»(7,))^
(3; Jr ./p

= F!(#, q) - Ft(p), i = 1, 2, • • ■ , n.

Put g o v{vl, • • • , 7]m) =v{vn, • • • , ?/'m), and changing the inte-

gral variable n by w', we can see

?) = f *'(#. 9 ° vM)c(v(-n))dr,
J V

*KP, »(V)Mr1 o v(v'))J(v'W
T

- r »'(^»(»/'»c^o^ow)^'.
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because »?—>t?' is an analytic function of 77 and g o VC. U. As c(v(r]')),

gor, and g_l are functions of class C3, the above equality shows that

F[(p, v(rj)) are functions of class C3 with respect to 77 when p is fixed.

Consequently, by (3), SE^fj), k(t?)) are functions of class C3 with

respect to 77 when # is fixed. From (1), we can get

(4) = I ¥*(#> q)c{p)dp 4- f **(# o ff, r)c(p)dp

- f qor)c(p)dp.

From the fact that if L7 is sufficiently small, -4p (pEU) is suffi-

ciently near to the identity matrix and that Juc(p)dp = l, it follows

that the determinant \ fuAPjc(p)dp\ is not zero. Consequently, using

the same argument as above on fu&'iP 0 Q< r) c(P)dp, we can deduce

from (4) that if g) is of class C3 with respect to q when # is fixed,

<^i{P< ?) is 01 class C3 with respect to p when g is fixed. Thus we have

proved that ^lt(p, q) is of class C3 with respect to both p and q in the

coordinate system »(771, • • • , 77"*). As any element p of G is written

uniquely as p = nm^, «GA7, m^CM, we can introduce a coordinate

system w(f\ • • • , fn+m) in G by

»(r1, • • •. r+m)

= «er1, • • •, r)<*>oO(r+1, • • •. r+m)Mr+1, • • ■, rn+m).

As <po(f(r?)) GA7 and A7 is abelian, we can easily verify that the product

function /»(f1, » • •, rn+m; f'1, r • •', s""+m) (m-I, 2, ■ • • , n+w) of

G with respect to this coordinate system is given by

Hi , " • , i    , f , • • • . s     1 = s 4- -A»(t»n.---.r»+")js

*   ,   , n+l n-t-m       . tn+m

4- *♦„(»(»■   , • • • , f    ), v(t     , . • • , f ))

(i = 1, 2, • • • , «),

/ (f , • • • . f   ; f - ■ • • . r )
i    n+1 n+m      rn+l /n+m

= g (r  > • • • . f   ; f )

(i = w + 1, • ■ ■ , n + m),

where g*~n^n+1, ■ ■ ■ , ^n+m; • ■ ■ , ?'n+m) is the product func-

tion of p o q with respect to i>(fn+1> • ■ • , fn+m).
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Thus, with respect to the coordinate system the product

function of G is of class C* and hence G is a local Lie group.

Proof of the Theorem. When G has the discrete center, Lemma 5

shows that G is a local Lie group.

When G has the non-discrete center N, by Lemma 4, 7Y is an

abelian Lie group, and by Lemma 5 again, G/N is a local Lie group.

Then we can introduce a canonical coordinate of the second kind by

*iXl • • • , x*^", where xj**' (i= 1, 2, • • • , m) are one-parameter sub-

groups of G/N. Take of G from the coset x* for each i, we can

easily show that the set M = {y; y = xXl >■ • • x1^, |X»| ^l} satisfies

the condition (3) of Lemma 6. Consequently, by Lemma 6, G is a

local Lie group. This completes our proof.
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NOTE ON A THEOREM OF KOKSMA

wm. J. leveque1

In 1935 Koksma [2]2 showed, among other things, that the se-

quence x, a:2, x*, • • • is uniformly distributed (mod 1) for almost

all x > 1; that is, that if N(n, a, ß, x) denotes the number of elements

x' of the sequence x, x2, • • • , xn for which

0 g a £ *' - [x>] < ß ^ 1,

then

N(n, a, ß, x)
lim- = p — a
n—»» fl

Presented to the Society, September 10, 1948, under the title A metric theorem on

uniform distribution (mod 1); received by the editors January 24, 1949 and, in revised

form, February 10, 1949.
1 The author is indebted to Professor Mark Kac for his help in connection with

this paper.

* Numbers in brackets refer to the bibliography at the end of the paper.


