ON EULER TRANSFORMS

PHILIP HARTMAN AND AUREL WINTNER

Let E_0 denote the class of non-constant functions satisfying

(1)
$$d\phi(x) \ge 0$$
 where $0 \le x < \infty$.

Then the Euler transform

(2)
$$\phi_{\lambda}(x) = \int_{0}^{\infty} (x+t)^{-\lambda} d\phi(t), \quad \text{where } 0 < x < \infty,$$

is defined for some ϕ of class E_0 . Let E_{λ} denote the class of all functions ϕ_{λ} belonging to a fixed $\lambda > 0$ and to some ϕ of class E_0 . It will be shown that

(3)
$$E_{\lambda}$$
 is a (proper) subset of E_{μ} if $\lambda < \mu$.

This implies that

(4)
$$E_{\infty} = \lim_{\lambda \to \infty} E_{\lambda} \text{ if } E_{\infty} = \sum_{0 < \lambda < \infty} E_{\lambda}.$$

The class E_{∞} is closely related to the Hausdorff-Bernstein class, consisting of all functions which are completely monotone for $0 < x < \infty$. Let E^{∞} denote the latter class. It will be shown that

(5)
$$E_{\infty}$$
 is a (proper) subset of E^{∞}

and that, with reference to the "natural" topology on E^{∞} ,

(6)
$$E_{\infty}$$
 is dense on E^{∞} .

It should be noted that E^{∞} consists of all functions representable in the form

(7)
$$\phi^{\infty}(x) = \int_{0}^{\infty} e^{-xt} d\phi(t), \quad \text{where } 0 < x < \infty,$$

provided that ϕ , instead of being subject to both restrictions (1), is subject only to the second of those restrictions and to the assumption that the integral (7) is convergent at every x>0 (but not necessarily at x=0). By the "natural" topology on E^{∞} is meant that defined by the Helly convergence of monotone functions.

PROOF OF (3). It is readily verified from (1) and (2) that, as $x \to \infty$, no $\phi_{\lambda}(x)$ can tend to 0 as strongly as $x^{-\mu}$, if $\mu > \lambda$. On the

Received by the editors January 31, 1949.

other hand, (2) shows that $\phi_{\mu}(x) = x^{-\mu}$ if $\phi(t) = \operatorname{sgn} t$. Hence, the parenthetical assertion of (3) will need no further proof.

The main assertion of (3) is that, if $0 < \lambda < \mu$, there belongs to every $\phi_{\lambda}(t)$ of class E_{λ} some $\phi^*(t)$ of class E_0 satisfying

(8)
$$\phi_{\lambda}(x) = \phi_{\mu}^{*}(x), \quad \text{where } 0 < x < \infty.$$

It will be shown that such a $\phi^*(t)$ is supplied by the absolutely continuous function having the derivative

(9)
$$d\phi^*(t)/dt = A \int_0^t (t - s)^{\mu - \lambda - 1} d\phi(s)$$
 (0 < t < \infty, $\phi^*(0) = \phi^*(+0)$),

where $A = A(\lambda, \mu)$ is a positive constant.

In view of (2), the assertion of (8) and (9) means that

$$\int_0^\infty (x+t)^{-\lambda} d\phi(t) = \Lambda \int_0^\infty (x+t)^{-\mu} \left\{ \int_0^t (t-s)^{\mu-\lambda-1} d\phi(s) \right\} dt,$$

where $0 < x < \infty$. It follows therefore from (1), and from (the Stieltjes form of) Fubini's theorem, that it is sufficient to verify the identity

$$\int_0^{\infty} (x+t)^{-\lambda} d\phi(t) = A \int_0^{\infty} \left\{ \int_s^{\infty} (x+t)^{-\mu} (t-s)^{\mu-\lambda-1} dt \right\} d\phi(s).$$

But the latter holds for every ϕ of class E_0 if

$$(x+t)^{-\lambda} = A \int_{t}^{\infty} (x+s)^{-\mu} (s-t)^{\mu-\lambda-1} ds$$

is an identity in (x, t), where x>0, t>0. Hence, if the integration variable s is replaced by s-t, and if x+t is then called x, it follows that it is sufficient to verify the identity

$$x^{-\lambda} = A \int_0^{\infty} (x+s)^{-\mu} s^{\mu-\lambda-1} ds,$$

where A is independent of x. Finally, the truth of this identity follows by changing s to xs (at a fixed x>0).

This proves (3). It also follows that the value of the constant $A = A(\lambda, \mu)$ which occurs in (9) is given by

$$1 = A \int_0^\infty (1+s)^{-\mu} s^{\mu-\lambda-1} ds.$$

Incidentally, the last integral can readily be transformed into the

integral defining $B(\lambda, \mu) = \Gamma(\lambda)\Gamma(\mu - \lambda)/\Gamma(\mu)$; so that, in (9),

(9 bis)
$$A = A(\lambda, \mu) = 1/B(\lambda, \mu).$$

PROOF OF (5). It is seen from (1) that $(-1)^n$ times the *n*th derivative of the function (2) is non-negative for $n=0, 1, 2, \cdots$. This means that every class E_{λ} is contained of the Hausdorff-Bernstein class, E^{∞} . Hence, by (4), E_{∞} is contained in E^{∞} . The parenthetical part of (5) follows from the fact that e^{-x} is in E^{∞} , but e^{-x} is not in E_{∞} . For otherwise e^{-x} would be in E_{λ} some λ , which would imply, for x>0 and $t_0>0$, that

$$e^{-x} \geq (x + t_0)^{-\lambda} (\phi(t_0) - \phi(0)),$$

by (1) and (2). If t_0 is chosen so that $\phi(t_0) - \phi(0) > 0$, the last formula line leads to a contradiction for large x. This contradiction shows that e^{-x} cannot be in E_{∞} and completes the proof of (5).

PROOF OF (6). Let b>0 and $\lambda>0$. Then it is readily verified that

$$b^{\lambda} \int_0^{\infty} (x+t)^{-\lambda} d \operatorname{sgn} (t-b) = (1+x/b)^{-\lambda},$$

where $0 \le x < \infty$. Clearly, the expression on the left of this identity represents a function of class E_{λ} . On the other hand, the expression on the right tends to e^{-ax} if $\lambda \to \infty$ and $b = \lambda/a$, where a is any positive constant. Accordingly, every function of the form e^{-ax} is a limit, as $\lambda \to \infty$, of functions contained in E_{λ} . Hence, the same is true of every function of the form

$$\sum_{k=1}^{m} c_k e^{-a_k x},$$

where c_k , a_k are arbitrary non-negative constants. Since the latter sum is identical with the case

$$\phi(x) = \sum_{a_k \leq x} c_k$$

of the transform (7), the assertion of (6) now follows by a standard application of Helly's theorems on monotone functions.

THE JOHNS HOPKINS UNIVERSITY