ON EULER TRANSFORMS
PHILIP HARTMAN AND AUREL WINTNER
Let E, denote the class of non-constant functions satisfying
€)) do(x) = 0 where 0 = x < o,

Then the Euler transform

@ w@ = [+, where 0< 2 < w,
1]

is defined for some ¢ of class E,. Let E) denote the class of all func-

tions ¢, belonging to a fixed A>0 and to some ¢ of class E,. It w1ll
be shown that

3) E, is a (proper) subset of E, if A < p.

This implies that

4) E,=lim B\if E,= ), 6 E,.
A 0<A<o0

The class E, is closely related to the Hausdorff-Bernstein class,
consisting of all functions which are completely monotone for 0 <x
< w. Let E* denote the latter class. It will be shown that

5) E,, is a (proper) subset of E®
and that, with reference to the “natural” topology on E>,
(6) E, is dense on E>.

It should be noted that E® consists of all functions representable in
the form

0] o°(x) = j;we—"dqﬁ(t), where 0 < z < =,

provided that ¢, instead of being subject to both restrictions (1), is
subject only to the second of those restrictions and to the assump-
tion that the integral (7) is convergent at every x>0 (but not
necessarily at x=0). By the “natural” topology on E® is meant that
defined by the Helly convergence of monotone functions.

Proor oF (3). It is readily verified from (1) and (2) that, as
x— o, no ¢$(x) can tend to 0 as strongly as x#, if u>A. On the
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other hand, (2) shows that ¢,(x)=x"* if ¢(t)=sgn f. Hence, the
parenthetical assertion of (3) will need no further proof.

The main assertion of (3) is that, if 0 <\ <, there belongs to every
&\(¢) of class E) some ¢*(¢) of class E, satisfying

(8) (%) = du(%), where 0 < z < .

It will be shown that such a ¢*(¢) is supplied by the absolutely con-
tinuous function having the derivative

(9) do*(1)/dt = A fo ‘(‘ —'s)1dg(s) (0 < ¢ < @, ¢*(0) = ¢*(+0)),

where A=A(), u) is a positive constant.
In view of (2), the assertion of (8) and (9) means that

j;”(x + ) do(t) = Afow(x + t)-ﬂ{fo‘(t _ s)u—k—ld¢(s)} dt,

where 0 <x < . It follows therefore from (1), and from (the Stieltjes
form of) Fubini's theorem, that it is sufficient to verify the identity

[ e rima0 =4 [ e+ 0 - 9mmafas.
But the latter holds for every ¢ of class E, if
(x+8)r=A f‘ °°(9(: + 5)#(s — H*1gs
is an identity in (x, £), where x>0, £>0. Hence, .if the integration

variable s is replaced by s—¢, and if x+¢ is then called x, it follows
that it is sufficient to verify the identity

A=A f (x + 5)~#s»2"1gs,
[]
where A is independent of x. Finally, the truth of this identity fol-
lows by changing s to xs (at a fixed x>0).
This proves (3). It also follows that the value of the constant

A=A(\, u) which occurs in (9) is given by

1=A f (1 4 s)—user—1ds,

0

Incidentally, the last integral can readily be transformed into the
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integral defining B(\, ) =I'(A\)T'(u —\)/T'(u) ; so that, in (9),
(9 bis) A = AQ\ p) = 1/B(\, p).

ProOF OF (5). It is seen from (1) that (—1)* times the nth deriva-
tive of the function (2) is non-negative for n=0, 1, 2, - - - . This
means that every class E, is contained of the Hausdorff-Bernstein
class, E*. Hence, by (4), E, is contained in E*. The parenthetical
part of (5) follows from the fact that e=# is in E®, but e~* is not in
E,. For otherwise e~2 would be in E) some \, which would imply, for
x>0 and £,>0, that

e 2 (2 + t)Mo(%) — ¢(0)),

by (1) and (2). If £, is chosen so that ¢ () —¢(0) >0, the last formula
line leads to a contradiction for large x. This contradiction shows
that = cannot be in E,, and completes the proof of (5).

ProoF oF (6). Let 5>0 and A>0. Then it is readily verified that

» f “+ O sgn (t— b) = (1+ 2B,

where 0 <x < ». Clearly, the expression on the left of this identity
represents a function of class E,. On the other hand, the expression
on the right tends to e—*# if A— » and b=M\/a, where ¢ is any positive
constant. Accordingly, every function of the form e—# is a limit, as
A— o, of functions contained in E,. Hence, the same is true of every
function of the form

m
Z Cre b7,
k=1

where ci, ax are arbitrary non-negative constants. Since the latter
sum is identical with the case

o(x) = X ¢

arSz

of the transform (7), the assertion of (6) now follows by a standard
application of Helly’s theorems on monotone functions.
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