Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
Blog on Math Blogs

Image of the MonthImage of the Month
Image of the Month

Ben Polletta explores the goals and media coverage of President Obama's BRAIN Initiative.


Related Links Related Links

AMS Members OnlyAMS Members Only

Headlines & Deadlines AMS Members Only

Contact Us

Contact Us

Mike Breen and Annette Emerson
Public Awareness Officers

paoffice at
Tel: 401-455-4000
Fax: 401-331-3842
Tony Phillips Tony Phillips' Take on Math in the Media
A monthly survey of math news
Mail to a friend · Print this article· Previous Columns

This month's topics:

"Fibonacci Mandala"



Fibonacci Mandala, by Yasuo Nomura, is #7 in La Repubblica's slide show. Larger image. Image courtesy of Yasuo Nomura.

"The Fibonacci sequence becomes a painting: art is mathematics" was a slide show featured on March 3, 2014 in La Repubblica. The thirteen paintings are presented by Virginia Della Sala: "Behind every one of Yasuo Nomura's landscapes ... hides a mathematical sequence, a physical theory, a scientific graph. The Fibonacci sequence, golden ratios, prime numbers, the Ptolemaic and Copernican systems." Della Sala quotes Nomura: "These are all elements of my pictorial practice. I take my cue from theoretical physics and modern mathematics, and apply them to the representation of what's real. Not only that: in my art I also theorize the tight relation that these numbers and these structural theories have with spaces and realities of dimensions higher than those we perceive."

Quasicrystal, Penrose tiling

A new example of a quasicrystal, with local 5-fold symmetry, was published in Nature on March 6, 2014. "Self-assembly of hydrogen-bonded two-dimensional quasicrystals" uses scanning tunnelling microscopy to study "self-assembled monolayers of ferrocenecarboxylic acid (FcCOOH)" and finds that "FcCOOH forms highly unusual cyclic hydrogen-bonded pentamers, which combine with simultaneously formed FcCOOH dimers to form two-dimensional quasicrystallites that exhibit local five-fold symmetry and maintain translational and rotational order (without periodicity) for distances of more than 400 ångströms." The authors (S. Alex Kandel and 7 collaborators, from the Notre Dame Chemistry and Biochemistry, and Chemical Engineering departments) remark that "FcCOOH represents an entirely new class of quasicrystalline materials, and is the only one in which molecular self-assembly results in five-fold symmetry."


An Escheresque representation of the intermediate-range geometric isomorphism between a FcCOOH quasicrystal and a Penrose tiling. Larger image. Image courtesy of Alex Kandel.

Kandel et al. analyze a scanning tunnelling micrograph of the structure by overlaying a pentagon on each pentamer. "... the pentagons and their interstitial spaces match the shapes in a Penrose 'P1' tiling (pentagon, rhombus, boat and star), with only a few small gaps in evidence. A number of intermediate-range structures exactly mirror those of a Penrose tiling. As in the Penrose tiling, orientational ordering of pentagons in the experimental image is nearly perfect, with only two directions observed." Globally the match is not complete. "Differences between the Penrose tiling and the FcCOOH monolayer include the small gaps described above and the presence of relatively more rhombuses and fewer stars, as well as the prevalence of pentagons with four other pentagons immediately adjacent. In a Penrose tiling, pentagons may have two, three or five immediate neighbours, and two adjacent pentagons cannot have the same number of neighbours. Replicating these constraints would be difficult with pairwise interactions, and this probably explains differences between the monolayer and Penrose structures."

"Both Genders Think Women Are Bad at Basic Math"

John Bohannon posted an item with that title on the Science NOW website, March 10, 2014; he is referring to a PNAS article How stereotypes impair women's careers in science, by Ernesto Reuben, Paola Sapienza, and Luigi Zingales, posted online that same day. Bohannon presents the research as growing from a 2008 study, "Culture, Gender and Math," published in Science, which summarized its findings: "Analysis of PISA results suggests that the gender gap in math scores disappears in countries with a more gender-equal culture," and in which Sapienza and Zingales participated. If that is so, then why are women so under-represented in mathematics and science careers? Here's how Bohannon reports the new research: "A study of how both men and women perceive each other's mathematical ability finds that an unconscious bias against women could be skewing hiring decisions, widening the gender gap in mathematical professions like engineering." And the main results: "Men and women employers alike revealed their prejudice against women for a perceived lack of mathematical ability. When the only information that the employers had was a photograph of the candidate, men were twice as likely to be hired for the simple math job, no matter whether it was a man or woman doing the hiring. ... The hiring bias did not disappear when candidates self-reported their ability on the task, in part because women tended to underestimate their ability while men tended to boast. And even when the employers received accurate information about the actual performance of the candidates, the bias did not fully disappear. The more prejudiced a person was, as measured by the Implicit Association Test, the less likely they were to correct their bias."

Math and March Madness

"March Madness" is what we call the annual NCAA basketball tournament, in which 64 teams compete in a binary "bracket" elimination format. This year, the "Final Four" in scheduled for April 5 and the championship for April 7. The public's mind has been wonderfully concentrated on the outcomes of the 63 games by the offer of a $1 billion reward for a "perfect bracket," i.e. the prediction of all 63 winners. And mathematics has entered the search for how to improve one's odds from one in 9 quintillion to something less infinitesimal, largely through the efforts of Tim Chartier of Davidson College. As Eric Chemi describes it in Businessweek ( "A Math Professor Turns Better Brackets Into Homework," March 19, 2014) Chartier's "phenomenally accurate system for predicting the National College Athletic Association tournament ... started out as a homework assignment for his students, but the results were so good that he turned it into an area of research. His bracket predictions have reached the 99th percentile in pools with millions of people." Chartier ran a bracketology workshop March 13 at MoMath, the Museum of Mathematics in New York. Mary Pilon has the story in the New York Times, March 15: "Typically, when the worlds of math and sports collide, name calling, noogies and maybe even a wedgie follow. But that was not the case Thursday night at the National Museum of Mathematics in Manhattan, where 50 would-be mathematicians huddled in a windowless classroom to harness the power of linear algebra and complex computer codes to predict the outcome of each of the 67 [sometimes the "First Four" play-in games are also included in the bracket] games in the N.C.A.A. men's basketball tournament." Chartier's MoMath presentation is available on YouTube.

More MoMath in the Times

On March 20, 2014, the New York Times ran a special section on museums, including a piece, "Start-Up Success Isn't Enough to Found a Museum," by David Wallis, on what can go wrong (most common mistake: "Fixating on bricks and mortar at the expense of compelling programming and a potent marketing plan," according to an expert). One success story Wallis presents is MoMath, the National Museum of Mathematics in New York; MoMath accounts for three, one full-width, of the pictures illustrating the article. He describes how the four founders "staged a traveling exhibition before opening in New York in 2012" ("[L]ike theater producers who tinker with a new play on the road before raising the curtain on Broadway"), which enabled them "to refine exhibits and brainstorm with experienced executives at science centers." And other good moves. "The museum attracted 173,225 visitors in its first year" exceeding estimates by 155% and resulting in "staffing shortages that the museum has alleviated but is still working to resolve."

Previous (and also very positive) Times coverage of MoMath was picked up in this column here.

Tony Phillips
Stony Brook University
tony at


Math Digest Math Digest
On Media Coverage of Math

Math Digest now includes posts throughout each month by Anna Haensch (2013 AMS Media Fellow) and Ben Polletta (Boston University). These early-career mathematicians provide their unique insights (and occasionally videos, interviews and podcasts) on math-related topics recently covered by the media.

Recently posted:

Celebrating Freeman Dyson on his 90th Birthday, by Ben Polletta

It's not that I didn't like Freeman Dyson before -- to tell the truth, I barely knew the guy -- but what's certain is that I like him a whole lot more having read Thomas Lin's recent interview on the occasion of his 90th birthday. Dyson is the quintessential mathematician's mathematician -- a skeptic, a humanist, an iconoclast, a hater of faculty meetings and a problem solver without pretensions of grandeur -- and his musings on science and his ongoing and rich career are full of charm and wisdom. Like many people of a certain age, Dyson was attracted to mathematics by E.T. Bell's tragically gendered classic "Men of Mathematics," whose pull, says Dyson, was in the way it "showed the mathematicians as being mostly crooks ... and not very clever ... it told a kid that 'if they can do it, why can’t you?'" So inspired, Dyson pursued mathematics and science partly as "a subversive activity," and partly as an exercise in creative self-expression. "I had this skill with mathematical tools, and I played these tools as well as I could just because it was beautiful," he says. "I'm not a person for big questions. I look for puzzles. ... I don't care whether they’re important or not." Nonetheless, his quest for interesting puzzles and his singular genius led him Dyson to make influential and often seminal contributions to a huge variety of disciplines -- including number theory, quantum field theory, random matrix theory, medical research (by helping to develop the low-power nuclear reactors that produce isotopes for research hospitals), and, as recently as 2012, evolutionary game theory. But Dyson remains thoroughly humble. "That's really my skill, just doing calculations and applying mathematics to all kinds of problems," he says. "Mathematics applies to all kinds of things. That's one of the joys of being a mathematician." Indeed. A similar humility comes through in Dyson's reminiscences about his groundbreaking work alongside Richard Feynman on quantum electrodynamics, which are worth viewing the accompanying mini documentary to hear.

Dyson's deep concern for social issues led him to a second career as a public intellectual, writing regularly for The New York Review of Books and penning a number of titles for popular audiences. He's fought for peace while advising the military on logistics to help them avoid unnecessary casualties, and he's been in the news recently for his controversial views on climate change. "What I'm convinced of is that we don't understand climate," he says here. "I'm not saying the majority is necessarily wrong. I'm saying that they don't understand what they're seeing." An article in the New York Times Magazine on Dyson and the climate change controversy surrounding him exposes the nuances of both Dyson's personality and his climate change skepticism. Not only does Dyson question the damage that carbon dioxide does to the planet's ecosystems, he believes coal is indispensable in fueling the "the move of the populations of China and India from poverty to middle-class prosperity," which "should be the great historic achievement of the century ... To me that's very precious." Dyson's views on the Ph.D., which are similarly controversial, and have similarly humane and sensible motivations, will resonate with many academics. "I'm very proud of not having a Ph.D.... It forces people to waste years and years of their lives sort of pretending to do research for which they're not at all well-suited," he says. "The Ph.D. takes far too long and discourages women from becoming scientists, which I consider a great tragedy. So I have opposed it all my life without any success at all." You win some, you lose some. Happy birthday, Mr. Dyson. (Photo: Freeman Dyson, Professor Emeritus, Institute for Advanced Study.)

See: "At 90, Freeman Dyson Ponders His Next Challenge," by Thomas Lin. Quanta Magazine, 31 March 2014.

--- Ben Polletta

Also now on Math Digest: Comprehending incomprehensibly large numbers; the crowd-sourcing mathematics project Polymath; logarithmic spirals and cycloids; statistical errors; and March Madness bracketology; and stand-up math comedian Matt Parker.

More . .

Read more of Math Digest

Reviews Reviews
Books, plays and films about mathematics

Citations for reviews of books, plays, movies and television shows that are related to mathematics (but are not aimed solely at the professional mathematician). The alphabetical list includes links to the sources of reviews posted online, and covers reviews published in magazines, science journals and newspapers since 1996.

More . .

Read more Reviews