01958cam 22004218i 450000100090000000300050000900500170001400600190003100700150005000800410006502000270010604000290013305000210016208200170018310000270020024500870022726300090031426400710032330000340039433600260042833700280045433800270048249000740050950400410058350503870062450600500101153300950106153800360115658800470119265000110123965000220125065000210127265000150129365000130130877601230132185600440144485600480148820038707RPAM20171004144655.0m b 000 0 cr/|||||||||||171004s2017 riu ob 000 0 eng  a9781470442026 (online) aDLCbengerdacDLCdRPAM00aQC156b.M33 201700a530.4/272231 aMcCuan, John,eauthor.14aThe stability of cylindrical pendant drops /h[electronic resource] cJohn McCuan. a1711 1aProvidence, Rhode Island :bAmerican Mathematical Society,c[2017] a1 online resource (pages cm.) atextbtxt2rdacontent aunmediatedbn2rdamedia avolumebnc2rdacarrier0 aMemoirs of the American Mathematical Society, x1947-6221 ; vv. 1189 aIncludes bibliographical references.00tIntroductiontChapter 1. Normalization, stability condition, and elementary propertiestChapter 2. One Parameter Families; Definition of $s_2$tChapter 3. StabilitytChapter 4. Infinitely long dropstChapter 5. Zero gravity and soap bubblestChapter 6. Open problemstAppendix 1: Explicit formulastAppendix 2: Sturm-Liouville TheorytAppendix 3: Elliptic integralstAcknowledgement1 aAccess is restricted to licensed institutions aElectronic reproduction.bProvidence, Rhode Island :cAmerican Mathematical Society.d2017 aMode of access : World Wide Web aDescription based on print version record. 0aDrops. 0aSpheroidal state. 0aFluid mechanics. 0aStability. 0aLiquids.0 iPrint version: aMcCuan, John,tstability of cylindrical pendant drops /w(DLC) 2017042967x0065-9266z97814704093884 3Contentsuhttp://www.ams.org/memo/1189/4 3Contentsuhttps://doi.org/10.1090/memo/1189